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Why codes and lattices?

• Fundamental objects in mathematics and computer science.

• Computational problems on such objects are basis of post-quantum cryptography.
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 is a linear code if it is a vector subspace of .C ⊆ 𝔽n
q 𝔽n
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There exists a generator matrix  such that .G ∈ 𝔽n×k C = {Gv : v ∈ 𝔽k
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Fundamental coding problems

Nearest Codeword Problem over  (NCP )𝔽q q

Input: A generator matrix , a distance bound , and a target vector G ∈ 𝔽n×k
q d ≥ 0 t ∈ 𝔽n

q

(YES) There is  such that c ∈ C(G) ∥c − t∥0 ≤ d

(NO) For every  it holds that c ∈ C(G) ∥c − t∥0 > d



Fundamental coding problems

Minimum Distance Problem over  (MDP )𝔽q q

Input: A generator matrix  and a distance bound G ∈ 𝔽n×k
q d ≥ 0

(YES) There is  such that              (   has minimum distance )c ∈ C(G) ∥c∥0 ≤ d ⟺ C ≤ d

(NO) For every  it holds that         (   has minimum distance )c ∈ C(G) ∥c∥0 > d ⟺ C > d

MDP  is NCP  with target q q t = 0
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“Minimum distance” of :
L
min

v∈L∖{0}
∥v∥p



Fundamental lattice problems

Closest Vector Problem in the  norm (CVP )ℓp p
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Fundamental lattice problems

Shortest Vector Problem in the  norm (SVP )ℓp p

Input: A basis  and a distance bound B ∈ ℤn×k d ≥ 0

(YES) There is  such that v ∈ L(B) ∥v∥p ≤ d

(NO) For every  it holds that v ∈ L(B) ∥v∥p > d

SVP  is CVP  with target p p t = 0



How hard are all these problems?

Pretty hard!

All NP-hard:


• NCP: Berlekamp, McEliece, van Tilborg ’78


• MDP: Vardy ’97


• CVP: van Emde Boas ’81 ( ) 


• SVP: Ajtai ’98 ( ) 

p = 2

p = 2



What if we only want approximate solutions?

For example, -approximate SVP  for approximation factor :


Input: A basis  and a distance bound 


(YES) There exists  such that 


(NO) Every  satisfies 

γ p γ ≥ 1
B ∈ ℤn×k d

v ∈ L(B) ∥v∥p ≤ d

v ∈ L(B) ∥v∥p > γd



What if we only want approximate solutions?

Still pretty hard!
All NP-hard for arbitrary constant approximation factor  (and beyond):

• NCP: Håstad ’01

• MDP: Dumer, Micciancio, Sudan ’03

• CVP/SVP: Micciancio ’00; Khot ’05; Haviv, Regev ’12 ( )

γ

p ≥ 1
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Problem  is NP-hard. Does this mean that “real-world” instances of  
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Π Π

Example: Vertex Cover

Input: -vertex graph  and parameter 

YES if  has vertex cover of size , NO otherwise.

n G k
G ≤ k

• Vertex Cover is NP-hard (Karp ’72)

• There’s an algorithm running in time  (Fellows ’88)O(2kn)

 Practical algo for Vertex Cover instances with small !⟹ k
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A problem  parameterized by  is Fixed-Parameter Tractable (FPT) if 
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Parameterized complexity

Example: Vertex Cover parameterized by cover size is FPT!

See input to problem  as , where  is the parameter of interest.Π (x, k) k

“decouples” input parts  and x k

Are there interesting problems believed not to be FPT?
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Input: -vertex graph  and parameter of interest 

YES if  has clique of size , NO otherwise.

n G k
G k

Clique is the canonical hard parameterized problem. A parameterized 
problem  is “hard” if there is an “FPT reduction” from Clique to .Π Π

FPT reduction:

 
Clique instance

(G, k)  
 instance
(x, k′￼)

Π

algorithm running

in time f(k) ⋅ nc

YES/NO instances mapped to YES/NO instances   &    k′￼ = g(k)



Dictionary
Unparameterized world Parameterized world

• The class 


• The class 


•  is -hard if there is a polynomial-
time reduction from 3SAT to 

P
NP

Π NP
Π

• The class 


• The class 


•  is -hard if there is an 
FPT-reduction from Clique to 

FPT
W[1]

Π W[1]
Π

FPT reduction:
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Π
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 -NCP  is -hard for all  and 


 -MDP  is -hard for all 

γ q W[1] q γ
γ 2 W[1] γ

 Lattices: 
 -CVP  is -hard for all  and 


 -SVP  is -hard for all  and some (small) 

γ p W[1] p ≥ 1 γ
γ p W[1] p > 1 γ(p) > 1

what about -SVP  
for large ? 

and SVP ?

γ p

γ

1

what about -MDP  
for ? 

γ q

q > 2



Our results

 Codes:

 -MDP  is -hard for all  and all γ q W[1] q γ

 Lattices: 
 -SVP  is -hard for any 

 -SVP  is -hard for  and all 
γ 1 W[1] γ < 2
γ p W[1] p > 1 γ > 1
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NP-hardness of approximating SVP
A pretty cool approach of Khot

Let’s take for granted that -CVP  is NP-hard, and reduce it to -SVP  .γ p γ′￼ p

t

Want: Transform a -CVP  instance  into a -SVP  instance .γ p (B, d, t) γ′￼ p (B′￼, d′￼)

B′￼ = [B ∣ t]

B x

β

= Bx + βt

If  is NO instance of -CVP  …


• : Then  is large


• : No guarantees… 

(B, d, t) γ p

β ≠ 0 ∥Bx + βt∥p

β = 0

The obvious approach:
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NP-hardness of approximating SVP
A pretty cool approach of Khot

tB

A s

x

β

y

= [Bx + βt
Ay + βs] • If  is a YES CVP  instance, number of 

short vectors is at least  

(B, d, t) p

Ngood = |{w ∈ L(A) : ∥w − s∥p ≪ γd} |

 is basis of 

lattice with large 
min distance

A

• If  is a NO CVP  instance, number of 

short vectors is at most  

(B, d, t) p

Nbad = |{v ∈ ℤn : ∥v∥p < γd} |

• Provided that  , obtain the 

desired SVP instance  by randomly 
sparsifying this intermediate lattice.  

Ngood ≫ Nbad
(B′￼, d′￼)
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Locally dense lattices

N𝗀𝗈𝗈𝖽 = |{w ∈ L(A) : ∥w − s∥p ≪ γd} | ≫ N𝖻𝖺𝖽 = |{v ∈ ℤn : ∥v∥p < γd} |

Khot’s reduction works if

Locally dense lattice : 

•  has minimum distance  ;


• With high probability over random 
sampling of  there are many vectors in 

 close to .

L(A)

L(A) ≫ γd

s
L(A) s

A construction based on linear codes:

 generator matrix of binary BCH code with 
minimum distance  :
G

> γd

L(A) = C(G) + 2ℤm

with .m = poly(n)
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Pros and cons of Khot’s reduction

Pro: Khot’s reduction from CVP to SVP is an FPT-reduction!

Con 1: It doesn’t work for … 


Metric embeddings take care of Con1 in the non-FPT setting, but they don’t work 
in the FPT setting.

p = 1

Con2: Not easy to amplify approximation factor (we’ll see more about this)
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Insight 2: If we don’t care about approx factor…

Khot’s approach uses binary BCH codes because they’re useful for amplifying the 
approximation factor in the non-FPT regime.

But they don’t work when …p = 1

“BCH-based 

locally dense lattice”

“Reed-Solomon-based 

locally dense lattice”

(Bennett-Peikert ’22)

 Conclusion: -SVP  is -hard for any approximation factor .γ 1 W[1] γ < 2
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Amplifying the approximation factor for lattices

This was easy for codes, since .d(C ⊗ C) = d(C)2

But for lattices it may happen that  …d(L ⊗ L) ≪ d(L)2

“Haviv-Regev showed that Khot’s SVP instances 
tensor nicely, so it looks like we’re done…”

“Wait… Khot’s SVP instances come from special CVP 
instances based on Exact Set Cover.”

“Oh! And we don’t know whether approximating 
Exact Set Cover is -hard…”W[1]

“Hmm… Cool problem!”
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Need a different approach to amplify the approximation factor of SVP!

t
  

(binary 
code )

G

C

Idea: Apply Khot’s approach to 
reduce from NCP  to SVP  !


Can ensure Haviv-Regev tensoring 
conditions are satisfied in this case.

2 p 

(construction A)

L = 2(C(G) + 2ℤn) 2t

 Conclusion: -SVP  is -hard for 

all  and all approx factor .

γ p W[1]
p > 1 γ > 1

s

(locally dense)

L′￼ = BCH + 2ℤm
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Wrapping up

Thanks!

• Deterministic FPT reductions? 

Unknown for SVP even in the unparameterized setting!

• -hardness of -SVP  for all approximation factors ? 

The last missing puzzle piece!

W[1] γ 1 γ > 1


