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Why codes and lattices?

 Fundamental objects in mathematics and computer science.

 Computational problems on such objects are basis of post-quantum cryptography.

Post-Quantum Cryptography

Summary

Post-Quantum Cryptography (PQC) - An area of cryptography that researches and advances the use of
quantume-resistant primitives, with the goal of keeping existing public key infrastructure intact in a future era
of quantum computing. Intended to be secure against both quantum and classical computers and deployable
without drastic changes to existing communication protocols and networks.
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Minimum distance and error-correction

Minimum distance of C:

[Vlg = #{i: c; # 0} d(C)= min |c—c,

c,c'eC,c#c’

nearest codeword

decoding Minimum distance captures error-correction
Z\ properties of C
d=1 s
2
- c ¢ - -
¢ d—1 ,
If < 5 errors introduced, guaranteed to

recover ¢ from Z.
min dist > d



Fundamental coding problems

Nearest Codeword Problem over [Fq (NCPq)

Input: A generator matrix G € [F’;Xk, a distance bound d > 0, and a target vector t & [FZ

(YES) There is c € C(G) such that ||c —¢||p < d

(NO) For every ¢ € C(G) it holds that ||c — ][ > d



Fundamental coding problems

Minimum Distance Problem over [Fq (MDPq)

Input: A generator matrix G € [F’;Xk and a distance bound d > 0

(YES) There is ¢ € C(G) such that ||c||o < d (<= C has minimum distance < d)

(NO) For every ¢ € C(G) it holds that ||c||y > d (<= C has minimum distance > d)

MDP_is NCP _ with target 7 = 0
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n

L C R"is a lattice if it is a discrete subgroup of |

There exists a basis B € R™ such that L = {Bv:v €& Zk}.

1/p

n
[vll, = Z | v | (£,-norm of v, p > 1)
WIEL 'W1+W2€L =1
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Fundamental lattice problems

Closest Vector Problem in the ¢ , norm (CVPp)

Input: A basis B € 7™k 4 distance bound d > 0, and a target vector r € Z"

(YES) There is v € L(B) such that ||v — ¢||, < d

(NO) For every v € L(B) it holds that [[v — ]| , > d



Fundamental lattice problems

Shortest Vector Problem in the , horm (SVP)
Input: A basis B € Z"¥ and a distance bound d > 0

(YES) There is v € L(B) such that ||v||, < d

(NO) For every v € L(B) it holds that ||v]|, > d

SVP, is CVP, with target 1 = 0



How hard are all these problems?

Pretty hard!

All NP-hard:
 NCP: Berlekamp, McEliece, van Tilborg 78

« MDP: Vardy 97
» CVP: van Emde Boas '81 (p = 2)

+ SVP: Ajtai '98 (p = 2)



What if we only want approximate solutions?

For example, y-approximate SVPp for approximation factor y > 1.

Input: A basis B € Z’”* and a distance bound d
(YES) There exists v € L(B) such that |[v||, < d

(NO) Every v € L(B) satisfies ||v|, > yd



What if we only want approximate solutions?

For example, y-approximate SVPp for approximation factor y > 1.

Input: A basis B € Z’”* and a distance bound d
(YES) There exists v € L(B) such that |[v||, < d

(NO) Every v € L(B) satisfies ||v|, > yd

Still pretty hard!
All NP-hard for arbitrary constant approximation factor y (and beyond):

« NCP: Hastad ’01
e MDP: Dumer, Micciancio, Sudan '03

» CVP/SVP: Micciancio '00; Khot ’05; Haviv, Regev ’12 (p > 1)
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are computationally intractable? Not necessarily...

M.R. Fellows

Example: Vertex Cover
Input: n-vertex graph G and parameter k

YES if G has vertex cover of size < k, NO otherwise.

Rodney G
Michael R. Fe

e \ertex Cover is NP-hard (Karp ,72)
Fundamentals

ggmefgﬁ;e”md . There’s an algorithm running in time O(2*n) (Fellows ’88)

—> Practical algo for Vertex Cover instances with small k!

@ Springer
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Parameterized complexity

OOOOOOOOOOOOOOOOOOOOOOOOOOO

E—— See input to problem I1 as (x, k), where k is the parameter of interest.

COMPLEXITY

.G. Downey
M.R. Fellows

A problem 11 parameterized by k is Fixed-Parameter Tractable (FPT) if
there is an associated algorithm running in time

fk) - | x|V

“decouples” input parts x and k

1., 10.wn“E 1 | 0 l|) : :: : 'll lji ! l : x‘,i ‘\' |‘ 5
Michael R Fellows., 3¢ 1o iiviy
103411 1o 100 13 I

Fundamental
of Parameterized
Complexity

for some function /.

Example: Vertex Cover parameterized by cover size is FPT!

Are there interesting problems believed not to be FPT?

@ Springer




Parameterized complexity

OOOOOOOOOOOOOOOOOOOOOOOOOOO Clique

PARAMETERIZED

COMPLEXITY .

Input: n-vertex graph G and parameter of interest k

YES if G has clique of size k, NO otherwise.

Cligue is the canonical hard parameterized problem. A parameterized
problem 11 is “hard” if there is an “FPT reduction” from Clique to 11.

Rodney
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Parameterized complexity

]
OOOOOOOOOOOOOOOOOOOOOOOOOOO IIque

PARAMETERIZED
COMPLEXITY

Input: n-vertex graph G and parameter of interest k
YES if G has clique of size k, NO otherwise.

Cligue is the canonical hard parameterized problem. A parameterized
problem 11 is “hard” if there is an “FPT reduction” from Clique to 11.

FPT reduction: . .
algorithm running

of Parameterized in time f(k) - n*¢ !
Complexity (G’ k ) # (x’ k )

Clique instance I1 instance

sy YES/NO instances mapped to YES/NO instances & k' = g(k)




Dictionary

Unparameterized world Parameterized world
e The class P  The class FPT
e The class NP  The class W|1]
e 11 is NP-hard if there is a polynomial- o [1is W]1]-hard if there is an
time reduction from 3SAT to 11 FPT-reduction from Clique to 11

FPT reduction: . .
algorithm running

(G, k) in time f(k) - n® (x, k")
Clique instance I1 instance

YES/NO instances mapped to YES/NO instances & k' = g(k)
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Parameterized hardness of coding and lattice problems

Downey-Fellows ’13: W[1]-hardness of MDP, one of the “most infamous” open

problems in parameterized complexity.

2021: Enter Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi,

and Marx!

Codes:
}/—NCPq is W[ 1]-hard for all g and y o o

y-MDP, is W[ 1]-hard for all ¥

Lattices:
y-CVP,, is W|1]-hard forallp > 1 and y

y-SVP ,is W[1]-hard for all p > 1 and some (small) y(p) > 1

what about y-MDP |
forg > 272

what about y-SVP,
for large y?

and SVP?



Our results

y-MDP _is W[1]-hard for all g and all y

Lattices:
y-SVP, is W|[1]-hard for any y < 2

y-SVP,, is W|1l]-hardforp > 1 and all y > 1
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Let’s take for granted that y-CVP , is NP-hard, and reduce it to y’—SVPp .

Want: Transform a y-CVP,, instance (B, d,?) into a y-SVP, instance (B, d).
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NP-hardness of approximating SVP
A pretty cool approach of Khot

Let’s take for granted that y-CVP , is NP-hard, and reduce it to y’—SVPp .

Want: Transform a y-CVP,, instance (B, d,?) into a y-SVP, instance (B, d).

The obvious approach:

If (B, d, 1) is NO instance of y-CVP,, ...

= Bx + ft + p# 0:Then ||Bx + pt|| , is large

» [/ = 0: No guarantees...
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NP-hardness of approximating SVP
A pretty cool approach of Khot

. If (B,d,t)isaNO CVP,, instance, number of

short vectors is at most

Npag = |{ve Z" : |v][, < yd} |

Bx + pt
Ay + ps

- If (B,d, 1) is a YES CVP,, instance, number of

short vectors is at least
Ngood =|{w e L) : [[w- SHp <L yd}]

A is basis of

lattice with large  Provided that Ngood > Npad » Obtain the

desired SVP instance (B’, d’) by randomly
sparsifying this intermediate lattice. O

min distance

&
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Locally dense lattices

Khot’s reduction works if

Nyos = 11w € LAY : w=sll, <yd}| > Neg=|{veEZ": |, <yd}]

Locally dense lattice L(A): A construction based on linear codes:

(G generator matrix of binary BCH code with
minimum distance > yd :

L(A) = C(G) + 27"™

e L(A) has minimum distance > yd ;

* With high probability over random

sampling of s there are many vectors in

L(A) close to s. with m = poly(n).
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Pros and cons of Khot’s reduction

Pro: Khot’s reduction from CVP to SVP is an FPT-reduction!

Con 1: It doesn’t work forp = 1...

Metric embeddings take care of Con1 in the non-FPT setting, but they don’t work
In the FPT setting.

Con2: Not easy to amplify approximation factor (we’ll see more about this)
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Insight 1: Khot for codes

Khot’s approach also reduces y-NCP_ to y-MDP  for some y(q), y'(g) > 1!

“locally dense lattice” ——— 5 “locally dense code”

“lattice sparsification” ——————— “Intersection with
random linear code”

Conclusion: y-MDP_is W[1]-hard for all g and some y'(g) > 1

How can we get W|1]-hardness for all y' > 17
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Amplifying the approximation factor in coding problems

;/—I\/IDPq is W[1]-hard for some :} y-I\/IDPq also W[1]-hard for y" > y

approximation factor y’ > 1

How? Tensor product of codes!

Use the fact that d(C ® C) = d(C)* -

x GT (G,d)is y-MDP_ YES/NO instance iff

- (G ® G,d?)is YES/NO (y' = yz)—MDPq instance

Conclusion: y-MDP_is W[1]-hard for all g and all y > 1
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Insight 2: If we don’t care about approx factor...

Khot’s approach uses binary BCH codes because they’re useful for amplifying the
approximation factor in the non-FPT regime.

But they don’t work whenp = 1...

“*BCH-based “Reed-Solomon-based
locally dense lattice” ' locally dense lattice”

(Bennett-Peikert ’22)

Conclusion: y-SVP, is W| 1 |-hard for any approximation factor y < 2.
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Amplifying the approximation factor for lattices

This was easy for codes, since d(C ® C) = d(C)*.

But for lattices it may happen that d(L. ® L) < d(L) ...

“Haviv-Regev showed that Khot's SVP instances

tensor nicely, so it looks like we’re done...”
“Wait... Khot's SVP instances come from special CVP

instances based on Exact Set Cover.”

“Oh! And we don’t know whether approximating

Exact Set Cover is W|1]|-hard...”
“Hmm... Cool problem!”
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Insight 3: Turning codes into lattices

Need a different approach to amplify the approximation factor of SVP!

Idea: Apply Khot’s approach to
reduce from NCP, to SVP, !

Can ensure Haviv-Regev tensoring
conditions are satisfied in this case.

Conclusion: y-SVP , is W|1]-hard for

all p > 1 and all approx factor y > 1.
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