
Parameterized hardness of
coding and lattice problems

João Ribeiro
CMU → NOVA LINCS & FCT-UNL

Mahdi Cheraghchi

University of Michigan

Venkatesan Guruswami

UC Berkeley

Huck Bennett

Oregon State University

Why codes and lattices?

• Fundamental objects in mathematics and computer science.

• Computational problems on such objects are basis of post-quantum cryptography.

What is a (linear) code?

 is a linear code if it is a vector subspace of .C ⊆ 𝔽n
q 𝔽n

q

There exists a generator matrix such that .G ∈ 𝔽n×k C = {Gv : v ∈ 𝔽k
q}

What is a (linear) code?

 is a linear code if it is a vector subspace of .C ⊆ 𝔽n
q 𝔽n

q

There exists a generator matrix such that .G ∈ 𝔽n×k C = {Gv : v ∈ 𝔽k
q}

c1 ∈ C

c2 ∈ C

What is a (linear) code?

 is a linear code if it is a vector subspace of .C ⊆ 𝔽n
q 𝔽n

q

There exists a generator matrix such that .G ∈ 𝔽n×k C = {Gv : v ∈ 𝔽k
q}

c1 ∈ C

c2 ∈ C

c1 + c2 ∈ C

What is a (linear) code?

 is a linear code if it is a vector subspace of .C ⊆ 𝔽n
q 𝔽n

q

There exists a generator matrix such that .G ∈ 𝔽n×k C = {Gv : v ∈ 𝔽k
q}

 (Hamming weight of)∥v∥0 = #{i : vi ≠ 0} v

c1 ∈ C

c2 ∈ C

c1 + c2 ∈ C

What is a (linear) code?

 is a linear code if it is a vector subspace of .C ⊆ 𝔽n
q 𝔽n

q

There exists a generator matrix such that .G ∈ 𝔽n×k C = {Gv : v ∈ 𝔽k
q}

 (Hamming weight of)∥v∥0 = #{i : vi ≠ 0} v

Minimum distance of :
C
d(C) = min

c,c′￼∈C,c≠c′￼

∥c − c′￼∥0

c1 ∈ C

c2 ∈ C

c1 + c2 ∈ C

What is a (linear) code?

 is a linear code if it is a vector subspace of .C ⊆ 𝔽n
q 𝔽n

q

There exists a generator matrix such that .G ∈ 𝔽n×k C = {Gv : v ∈ 𝔽k
q}

 (Hamming weight of)∥v∥0 = #{i : ci ≠ 0} v

min dist ≥ d

Minimum distance of :
C
d(C) = min

c,c′￼∈C,c≠c′￼

∥c − c′￼∥0

What is a (linear) code?

 is a linear code if it is a vector subspace of .C ⊆ 𝔽n
q 𝔽n

q

There exists a generator matrix such that .G ∈ 𝔽n×k C = {Gv : v ∈ 𝔽k
q}

 (Hamming weight of)∥v∥0 = #{i : ci ≠ 0} v

min dist ≥ d

d Minimum distance of :
C
d(C) = min

c,c′￼∈C,c≠c′￼

∥c − c′￼∥0

d

Minimum distance and error-correction

Minimum distance captures error-correction
properties of C

∥v∥0 = #{i : ci ≠ 0}
Minimum distance of :
C

d(C) = min
c,c′￼∈C,c≠c′￼

∥c − c′￼∥0

min dist ≥ d

d

Minimum distance and error-correction

Minimum distance captures error-correction
properties of C

c ∈ C z

∥v∥0 = #{i : ci ≠ 0}
Minimum distance of :
C

d(C) = min
c,c′￼∈C,c≠c′￼

∥c − c′￼∥0

min dist ≥ d

d

Minimum distance and error-correction

Minimum distance captures error-correction
properties of C

c ∈ C z

If errors introduced, guaranteed to

recover from .

≤
d − 1

2
c z

∥v∥0 = #{i : ci ≠ 0}
Minimum distance of :
C

d(C) = min
c,c′￼∈C,c≠c′￼

∥c − c′￼∥0

min dist ≥ d

Minimum distance and error-correction

Minimum distance captures error-correction
properties of C

c ∈ C z

If errors introduced, guaranteed to

recover from .

≤
d − 1

2
c z

∥v∥0 = #{i : ci ≠ 0}
Minimum distance of :
C

d(C) = min
c,c′￼∈C,c≠c′￼

∥c − c′￼∥0

min dist ≥ d

Minimum distance and error-correction

d − 1
2

Minimum distance captures error-correction
properties of C

c ∈ C z

If errors introduced, guaranteed to

recover from .

≤
d − 1

2
c z

∥v∥0 = #{i : ci ≠ 0}
Minimum distance of :
C

d(C) = min
c,c′￼∈C,c≠c′￼

∥c − c′￼∥0

min dist ≥ d

Minimum distance and error-correction

c ∈ C

Minimum distance captures error-correction
properties of C

z

If errors introduced, guaranteed to

recover from .

≤
d − 1

2
c z

∥v∥0 = #{i : ci ≠ 0}

d − 1
2

Minimum distance of :
C
d(C) = min

c,c′￼∈C,c≠c′￼

∥c − c′￼∥0

min dist ≥ d

Minimum distance and error-correction

c ∈ C

Minimum distance captures error-correction
properties of C

z

If errors introduced, guaranteed to

recover from .

≤
d − 1

2
c z

∥v∥0 = #{i : ci ≠ 0}

z
nearest codeword

decoding

d − 1
2

Minimum distance of :
C
d(C) = min

c,c′￼∈C,c≠c′￼

∥c − c′￼∥0

min dist ≥ d

Fundamental coding problems

Nearest Codeword Problem over (NCP)𝔽q q

Input: A generator matrix , a distance bound , and a target vector G ∈ 𝔽n×k
q d ≥ 0 t ∈ 𝔽n

q

(YES) There is such that c ∈ C(G) ∥c − t∥0 ≤ d

(NO) For every it holds that c ∈ C(G) ∥c − t∥0 > d

Fundamental coding problems

Minimum Distance Problem over (MDP)𝔽q q

Input: A generator matrix and a distance bound G ∈ 𝔽n×k
q d ≥ 0

(YES) There is such that (has minimum distance)c ∈ C(G) ∥c∥0 ≤ d ⟺ C ≤ d

(NO) For every it holds that (has minimum distance)c ∈ C(G) ∥c∥0 > d ⟺ C > d

MDP is NCP with target q q t = 0

What is a lattice?

 is a lattice if it is a discrete subgroup of .L ⊆ ℝn ℝn

There exists a basis such that .B ∈ ℝn×k L = {Bv : v ∈ ℤk}

What is a lattice?

 is a lattice if it is a discrete subgroup of .L ⊆ ℝn ℝn

There exists a basis such that .B ∈ ℝn×k L = {Bv : v ∈ ℤk}

w1 ∈ L

w2 ∈ L

What is a lattice?

 is a lattice if it is a discrete subgroup of .L ⊆ ℝn ℝn

There exists a basis such that .B ∈ ℝn×k L = {Bv : v ∈ ℤk}

w1 ∈ L

w2 ∈ L

w1 + w2 ∈ L

What is a lattice?

 is a lattice if it is a discrete subgroup of .L ⊆ ℝn ℝn

There exists a basis such that .B ∈ ℝn×k L = {Bv : v ∈ ℤk}

 (-norm of ,)∥v∥p = (
n

∑
i=1

|vi |
p)

1/p

ℓp v p ≥ 1

w1 ∈ L

w2 ∈ L

w1 + w2 ∈ L

What is a lattice?

 is a lattice if it is a discrete subgroup of .L ⊆ ℝn ℝn

There exists a basis such that .B ∈ ℝn×k L = {Bv : v ∈ ℤk}

 (-norm of ,)∥v∥p = (
n

∑
i=1

|vi |
p)

1/p

ℓp v p ≥ 1

w1 ∈ L

w2 ∈ L

w1 + w2 ∈ L

“Minimum distance” of :
L
min

v∈L∖{0}
∥v∥p

Fundamental lattice problems

Closest Vector Problem in the norm (CVP)ℓp p

Input: A basis , a distance bound , and a target vector B ∈ ℤn×k d ≥ 0 t ∈ ℤn

(YES) There is such that v ∈ L(B) ∥v − t∥p ≤ d

(NO) For every it holds that v ∈ L(B) ∥v − t∥p > d

Fundamental lattice problems

Shortest Vector Problem in the norm (SVP)ℓp p

Input: A basis and a distance bound B ∈ ℤn×k d ≥ 0

(YES) There is such that v ∈ L(B) ∥v∥p ≤ d

(NO) For every it holds that v ∈ L(B) ∥v∥p > d

SVP is CVP with target p p t = 0

How hard are all these problems?

Pretty hard!

All NP-hard:

• NCP: Berlekamp, McEliece, van Tilborg ’78

• MDP: Vardy ’97

• CVP: van Emde Boas ’81 ()

• SVP: Ajtai ’98 ()

p = 2

p = 2

What if we only want approximate solutions?

For example, -approximate SVP for approximation factor :

Input: A basis and a distance bound

(YES) There exists such that

(NO) Every satisfies

γ p γ ≥ 1
B ∈ ℤn×k d

v ∈ L(B) ∥v∥p ≤ d

v ∈ L(B) ∥v∥p > γd

What if we only want approximate solutions?

Still pretty hard!
All NP-hard for arbitrary constant approximation factor (and beyond):

• NCP: Håstad ’01

• MDP: Dumer, Micciancio, Sudan ’03

• CVP/SVP: Micciancio ’00; Khot ’05; Haviv, Regev ’12 ()

γ

p ≥ 1

For example, -approximate SVP for approximation factor :

Input: A basis and a distance bound

(YES) There exists such that

(NO) Every satisfies

γ p γ ≥ 1
B ∈ ℤn×k d

v ∈ L(B) ∥v∥p ≤ d

v ∈ L(B) ∥v∥p > γd

Parameterized complexity

Problem is NP-hard. Does this mean that “real-world” instances of
are computationally intractable? Not necessarily…

Π Π

Parameterized complexity

Problem is NP-hard. Does this mean that “real-world” instances of
are computationally intractable? Not necessarily…

Π Π

Example: Vertex Cover

Input: -vertex graph and parameter

YES if has vertex cover of size , NO otherwise.

n G k
G ≤ k

Parameterized complexity

Problem is NP-hard. Does this mean that “real-world” instances of
are computationally intractable? Not necessarily…

Π Π

Example: Vertex Cover

Input: -vertex graph and parameter

YES if has vertex cover of size , NO otherwise.

n G k
G ≤ k

• Vertex Cover is NP-hard (Karp ’72)

• There’s an algorithm running in time (Fellows ’88)O(2kn)

Parameterized complexity

Problem is NP-hard. Does this mean that “real-world” instances of
are computationally intractable? Not necessarily…

Π Π

Example: Vertex Cover

Input: -vertex graph and parameter

YES if has vertex cover of size , NO otherwise.

n G k
G ≤ k

• Vertex Cover is NP-hard (Karp ’72)

• There’s an algorithm running in time (Fellows ’88)O(2kn)

 Practical algo for Vertex Cover instances with small !⟹ k

A problem parameterized by is Fixed-Parameter Tractable (FPT) if
there is an associated algorithm running in time

for some function .

Π k

f(k) ⋅ |x |O(1)

f

Parameterized complexity

See input to problem as , where is the parameter of interest.Π (x, k) k

A problem parameterized by is Fixed-Parameter Tractable (FPT) if
there is an associated algorithm running in time

for some function .

Π k

f(k) ⋅ |x |O(1)

f

Parameterized complexity

See input to problem as , where is the parameter of interest.Π (x, k) k

“decouples” input parts and x k

A problem parameterized by is Fixed-Parameter Tractable (FPT) if
there is an associated algorithm running in time

for some function .

Π k

f(k) ⋅ |x |O(1)

f

Parameterized complexity

Example: Vertex Cover parameterized by cover size is FPT!

See input to problem as , where is the parameter of interest.Π (x, k) k

“decouples” input parts and x k

A problem parameterized by is Fixed-Parameter Tractable (FPT) if
there is an associated algorithm running in time

for some function .

Π k

f(k) ⋅ |x |O(1)

f

Parameterized complexity

Example: Vertex Cover parameterized by cover size is FPT!

See input to problem as , where is the parameter of interest.Π (x, k) k

“decouples” input parts and x k

Are there interesting problems believed not to be FPT?

Parameterized complexity

Clique

Input: -vertex graph and parameter of interest

YES if has clique of size , NO otherwise.

n G k
G k

Clique is the canonical hard parameterized problem. A parameterized
problem is “hard” if there is an “FPT reduction” from Clique to .Π Π

Parameterized complexity

Clique

Input: -vertex graph and parameter of interest

YES if has clique of size , NO otherwise.

n G k
G k

Clique is the canonical hard parameterized problem. A parameterized
problem is “hard” if there is an “FPT reduction” from Clique to .Π Π

FPT reduction:

Clique instance

(G, k)
 instance
(x, k′￼)

Π

algorithm running

in time f(k) ⋅ nc

YES/NO instances mapped to YES/NO instances & k′￼ = g(k)

Dictionary
Unparameterized world Parameterized world

• The class

• The class

• is -hard if there is a polynomial-
time reduction from 3SAT to

P
NP

Π NP
Π

• The class

• The class

• is -hard if there is an
FPT-reduction from Clique to

FPT
W[1]

Π W[1]
Π

FPT reduction:

Clique instance

(G, k)
 instance
(x, k′￼)

Π

algorithm running

in time f(k) ⋅ nc

YES/NO instances mapped to YES/NO instances & k′￼ = g(k)

Parameterized hardness of coding and lattice problems

Downey-Fellows ’13: -hardness of MDP one of the “most infamous” open
problems in parameterized complexity.

W[1] 2

Parameterized hardness of coding and lattice problems

Downey-Fellows ’13: -hardness of MDP one of the “most infamous” open
problems in parameterized complexity.

W[1] 2

2021: Enter Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi,
and Marx!

Parameterized hardness of coding and lattice problems

Downey-Fellows ’13: -hardness of MDP one of the “most infamous” open
problems in parameterized complexity.

W[1] 2

2021: Enter Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi,
and Marx!

 Codes:

 -NCP is -hard for all and

 -MDP is -hard for all

γ q W[1] q γ
γ 2 W[1] γ

 Lattices:
 -CVP is -hard for all and

 -SVP is -hard for all and some (small)

γ p W[1] p ≥ 1 γ
γ p W[1] p > 1 γ(p) > 1

Parameterized hardness of coding and lattice problems

Downey-Fellows ’13: -hardness of MDP one of the “most infamous” open
problems in parameterized complexity.

W[1] 2

2021: Enter Bhattacharyya, Bonnet, Egri, Ghoshal, Karthik C. S., Lin, Manurangsi,
and Marx!

 Codes:

 -NCP is -hard for all and

 -MDP is -hard for all

γ q W[1] q γ
γ 2 W[1] γ

 Lattices:
 -CVP is -hard for all and

 -SVP is -hard for all and some (small)

γ p W[1] p ≥ 1 γ
γ p W[1] p > 1 γ(p) > 1

what about -SVP
for large ?

and SVP ?

γ p

γ

1

what about -MDP
for ?

γ q

q > 2

Our results

 Codes:

 -MDP is -hard for all and all γ q W[1] q γ

 Lattices:
 -SVP is -hard for any

 -SVP is -hard for and all
γ 1 W[1] γ < 2
γ p W[1] p > 1 γ > 1

NP-hardness of approximating SVP
A pretty cool approach of Khot

Let’s take for granted that -CVP is NP-hard, and reduce it to -SVP .γ p γ′￼ p

Want: Transform a -CVP instance into a -SVP instance .γ p (B, d, t) γ′￼ p (B′￼, d′￼)

NP-hardness of approximating SVP
A pretty cool approach of Khot

Let’s take for granted that -CVP is NP-hard, and reduce it to -SVP .γ p γ′￼ p

Want: Transform a -CVP instance into a -SVP instance .γ p (B, d, t) γ′￼ p (B′￼, d′￼)

The obvious approach:

NP-hardness of approximating SVP
A pretty cool approach of Khot

Let’s take for granted that -CVP is NP-hard, and reduce it to -SVP .γ p γ′￼ p

Want: Transform a -CVP instance into a -SVP instance .γ p (B, d, t) γ′￼ p (B′￼, d′￼)

B

The obvious approach:

NP-hardness of approximating SVP
A pretty cool approach of Khot

Let’s take for granted that -CVP is NP-hard, and reduce it to -SVP .γ p γ′￼ p

t

Want: Transform a -CVP instance into a -SVP instance .γ p (B, d, t) γ′￼ p (B′￼, d′￼)

B

The obvious approach:

NP-hardness of approximating SVP
A pretty cool approach of Khot

Let’s take for granted that -CVP is NP-hard, and reduce it to -SVP .γ p γ′￼ p

t

Want: Transform a -CVP instance into a -SVP instance .γ p (B, d, t) γ′￼ p (B′￼, d′￼)

B

The obvious approach:

NP-hardness of approximating SVP
A pretty cool approach of Khot

Let’s take for granted that -CVP is NP-hard, and reduce it to -SVP .γ p γ′￼ p

t

Want: Transform a -CVP instance into a -SVP instance .γ p (B, d, t) γ′￼ p (B′￼, d′￼)

B′￼ = [B ∣ t]

B

The obvious approach:

NP-hardness of approximating SVP
A pretty cool approach of Khot

Let’s take for granted that -CVP is NP-hard, and reduce it to -SVP .γ p γ′￼ p

t

Want: Transform a -CVP instance into a -SVP instance .γ p (B, d, t) γ′￼ p (B′￼, d′￼)

B′￼ = [B ∣ t]

B x

β

The obvious approach:

NP-hardness of approximating SVP
A pretty cool approach of Khot

Let’s take for granted that -CVP is NP-hard, and reduce it to -SVP .γ p γ′￼ p

t

Want: Transform a -CVP instance into a -SVP instance .γ p (B, d, t) γ′￼ p (B′￼, d′￼)

B′￼ = [B ∣ t]

B x

β

= Bx + βt

The obvious approach:

NP-hardness of approximating SVP
A pretty cool approach of Khot

Let’s take for granted that -CVP is NP-hard, and reduce it to -SVP .γ p γ′￼ p

t

Want: Transform a -CVP instance into a -SVP instance .γ p (B, d, t) γ′￼ p (B′￼, d′￼)

B′￼ = [B ∣ t]

B x

β

= Bx + βt

If is NO instance of -CVP …

• : Then is large

• : No guarantees…

(B, d, t) γ p

β ≠ 0 ∥Bx + βt∥p

β = 0

The obvious approach:

NP-hardness of approximating SVP
A pretty cool approach of Khot

tB

NP-hardness of approximating SVP
A pretty cool approach of Khot

tB

A s

NP-hardness of approximating SVP
A pretty cool approach of Khot

tB

A s is basis of

lattice with large
min distance

A

NP-hardness of approximating SVP
A pretty cool approach of Khot

tB

A s

x

β

y is basis of

lattice with large
min distance

A

NP-hardness of approximating SVP
A pretty cool approach of Khot

tB

A s

x

β

y

= [Bx + βt
Ay + βs]

 is basis of

lattice with large
min distance

A

NP-hardness of approximating SVP
A pretty cool approach of Khot

tB

A s

x

β

y

= [Bx + βt
Ay + βs]

 is basis of

lattice with large
min distance

A

• If is a NO CVP instance, number of

short vectors is at most

(B, d, t) p

Nbad = |{v ∈ ℤn : ∥v∥p < γd} |

NP-hardness of approximating SVP
A pretty cool approach of Khot

tB

A s

x

β

y

= [Bx + βt
Ay + βs] • If is a YES CVP instance, number of

short vectors is at least

(B, d, t) p

Ngood = |{w ∈ L(A) : ∥w − s∥p ≪ γd} |

 is basis of

lattice with large
min distance

A

• If is a NO CVP instance, number of

short vectors is at most

(B, d, t) p

Nbad = |{v ∈ ℤn : ∥v∥p < γd} |

NP-hardness of approximating SVP
A pretty cool approach of Khot

tB

A s

x

β

y

= [Bx + βt
Ay + βs] • If is a YES CVP instance, number of

short vectors is at least

(B, d, t) p

Ngood = |{w ∈ L(A) : ∥w − s∥p ≪ γd} |

 is basis of

lattice with large
min distance

A

• If is a NO CVP instance, number of

short vectors is at most

(B, d, t) p

Nbad = |{v ∈ ℤn : ∥v∥p < γd} |

• Provided that , obtain the

desired SVP instance by randomly
sparsifying this intermediate lattice.

Ngood ≫ Nbad
(B′￼, d′￼)

Locally dense lattices

N𝗀𝗈𝗈𝖽 = |{w ∈ L(A) : ∥w − s∥p ≪ γd} | ≫ N𝖻𝖺𝖽 = |{v ∈ ℤn : ∥v∥p < γd} |

Khot’s reduction works if

Locally dense lattices

N𝗀𝗈𝗈𝖽 = |{w ∈ L(A) : ∥w − s∥p ≪ γd} | ≫ N𝖻𝖺𝖽 = |{v ∈ ℤn : ∥v∥p < γd} |

Khot’s reduction works if

Locally dense lattice :

• has minimum distance ;

• With high probability over random
sampling of there are many vectors in

 close to .

L(A)

L(A) ≫ γd

s
L(A) s

Locally dense lattices

N𝗀𝗈𝗈𝖽 = |{w ∈ L(A) : ∥w − s∥p ≪ γd} | ≫ N𝖻𝖺𝖽 = |{v ∈ ℤn : ∥v∥p < γd} |

Khot’s reduction works if

Locally dense lattice :

• has minimum distance ;

• With high probability over random
sampling of there are many vectors in

 close to .

L(A)

L(A) ≫ γd

s
L(A) s

A construction based on linear codes:

 generator matrix of binary BCH code with
minimum distance :
G

> γd

L(A) = C(G) + 2ℤm

with .m = poly(n)

Pros and cons of Khot’s reduction

Pro: Khot’s reduction from CVP to SVP is an FPT-reduction!

Pros and cons of Khot’s reduction

Pro: Khot’s reduction from CVP to SVP is an FPT-reduction!

Con 1: It doesn’t work for …

Metric embeddings take care of Con1 in the non-FPT setting, but they don’t work
in the FPT setting.

p = 1

Pros and cons of Khot’s reduction

Pro: Khot’s reduction from CVP to SVP is an FPT-reduction!

Con 1: It doesn’t work for …

Metric embeddings take care of Con1 in the non-FPT setting, but they don’t work
in the FPT setting.

p = 1

Con2: Not easy to amplify approximation factor (we’ll see more about this)

Insight 1: Khot for codes

Khot’s approach also reduces -NCP to -MDP for some !γ q γ′￼ q γ(q), γ′￼(q) > 1

Insight 1: Khot for codes

Khot’s approach also reduces -NCP to -MDP for some !γ q γ′￼ q γ(q), γ′￼(q) > 1

“locally dense lattice” “locally dense code”

“lattice sparsification” “intersection with
random linear code”

Insight 1: Khot for codes

Khot’s approach also reduces -NCP to -MDP for some !γ q γ′￼ q γ(q), γ′￼(q) > 1

“locally dense lattice” “locally dense code”

“lattice sparsification” “intersection with
random linear code”

 Conclusion: -MDP is -hard for all and some γ q W[1] q γ′￼(q) > 1

Insight 1: Khot for codes

Khot’s approach also reduces -NCP to -MDP for some !γ q γ′￼ q γ(q), γ′￼(q) > 1

“locally dense lattice” “locally dense code”

“lattice sparsification” “intersection with
random linear code”

 Conclusion: -MDP is -hard for all and some γ q W[1] q γ′￼(q) > 1

How can we get -hardness for all ?W[1] γ′￼ > 1

Amplifying the approximation factor in coding problems

-MDP is -hard for some
approximation factor
γ q W[1]

γ′￼ > 1
-MDP also -hard for γ q W[1] γ′￼ > γ⟹

Amplifying the approximation factor in coding problems

-MDP is -hard for some
approximation factor
γ q W[1]

γ′￼ > 1
-MDP also -hard for γ q W[1] γ′￼ > γ⟹

How? Tensor product of codes!

Amplifying the approximation factor in coding problems

-MDP is -hard for some
approximation factor
γ q W[1]

γ′￼ > 1
-MDP also -hard for γ q W[1] γ′￼ > γ⟹

How? Tensor product of codes!

G

Amplifying the approximation factor in coding problems

-MDP is -hard for some
approximation factor
γ q W[1]

γ′￼ > 1
-MDP also -hard for γ q W[1] γ′￼ > γ⟹

How? Tensor product of codes!

x
G

Amplifying the approximation factor in coding problems

-MDP is -hard for some
approximation factor
γ q W[1]

γ′￼ > 1
-MDP also -hard for γ q W[1] γ′￼ > γ⟹

How? Tensor product of codes!

x x
G

G

G⊤

Amplifying the approximation factor in coding problems

-MDP is -hard for some
approximation factor
γ q W[1]

γ′￼ > 1
-MDP also -hard for γ q W[1] γ′￼ > γ⟹

How? Tensor product of codes!

x x
G

G

G⊤

Use the fact that :d(C ⊗ C) = d(C)2

 is -MDP YES/NO instance if

 is YES/NO -MDP instance

(G, d) γ q

(G ⊗ G, d2) (γ′￼ = γ2) q

Amplifying the approximation factor in coding problems

 Conclusion: -MDP is -hard for all and all γ q W[1] q γ > 1

-MDP is -hard for some
approximation factor
γ q W[1]

γ′￼ > 1
-MDP also -hard for γ q W[1] γ′￼ > γ⟹

How? Tensor product of codes!

x x
G

G

G⊤

Use the fact that :d(C ⊗ C) = d(C)2

 is -MDP YES/NO instance if

 is YES/NO -MDP instance

(G, d) γ q

(G ⊗ G, d2) (γ′￼ = γ2) q

Insight 2: If we don’t care about approx factor…

Khot’s approach uses binary BCH codes because they’re useful for amplifying the
approximation factor in the non-FPT regime.

But they don’t work when …p = 1

Insight 2: If we don’t care about approx factor…

Khot’s approach uses binary BCH codes because they’re useful for amplifying the
approximation factor in the non-FPT regime.

But they don’t work when …p = 1

“BCH-based

locally dense lattice”

“Reed-Solomon-based

locally dense lattice”

(Bennett-Peikert ’22)

Insight 2: If we don’t care about approx factor…

Khot’s approach uses binary BCH codes because they’re useful for amplifying the
approximation factor in the non-FPT regime.

But they don’t work when …p = 1

“BCH-based

locally dense lattice”

“Reed-Solomon-based

locally dense lattice”

(Bennett-Peikert ’22)

 Conclusion: -SVP is -hard for any approximation factor .γ 1 W[1] γ < 2

Amplifying the approximation factor for lattices

This was easy for codes, since .d(C ⊗ C) = d(C)2

But for lattices it may happen that …d(L ⊗ L) ≪ d(L)2

Amplifying the approximation factor for lattices

This was easy for codes, since .d(C ⊗ C) = d(C)2

But for lattices it may happen that …d(L ⊗ L) ≪ d(L)2

Amplifying the approximation factor for lattices

This was easy for codes, since .d(C ⊗ C) = d(C)2

But for lattices it may happen that …d(L ⊗ L) ≪ d(L)2

“Haviv-Regev showed that Khot’s SVP instances
tensor nicely, so it looks like we’re done…”

Amplifying the approximation factor for lattices

This was easy for codes, since .d(C ⊗ C) = d(C)2

But for lattices it may happen that …d(L ⊗ L) ≪ d(L)2

“Haviv-Regev showed that Khot’s SVP instances
tensor nicely, so it looks like we’re done…”

“Wait… Khot’s SVP instances come from special CVP
instances based on Exact Set Cover.”

Amplifying the approximation factor for lattices

This was easy for codes, since .d(C ⊗ C) = d(C)2

But for lattices it may happen that …d(L ⊗ L) ≪ d(L)2

“Haviv-Regev showed that Khot’s SVP instances
tensor nicely, so it looks like we’re done…”

“Wait… Khot’s SVP instances come from special CVP
instances based on Exact Set Cover.”

“Oh! And we don’t know whether approximating
Exact Set Cover is -hard…”W[1]

Amplifying the approximation factor for lattices

This was easy for codes, since .d(C ⊗ C) = d(C)2

But for lattices it may happen that …d(L ⊗ L) ≪ d(L)2

“Haviv-Regev showed that Khot’s SVP instances
tensor nicely, so it looks like we’re done…”

“Wait… Khot’s SVP instances come from special CVP
instances based on Exact Set Cover.”

“Oh! And we don’t know whether approximating
Exact Set Cover is -hard…”W[1]

“Hmm… Cool problem!”

Insight 3: Turning codes into lattices

Need a different approach to amplify the approximation factor of SVP!

Insight 3: Turning codes into lattices

Need a different approach to amplify the approximation factor of SVP!

Idea: Apply Khot’s approach to
reduce from NCP to SVP !

Can ensure Haviv-Regev tensoring
conditions are satisfied in this case.

2 p

Insight 3: Turning codes into lattices

Need a different approach to amplify the approximation factor of SVP!

t
  

(binary
code)

G

C

Idea: Apply Khot’s approach to
reduce from NCP to SVP !

Can ensure Haviv-Regev tensoring
conditions are satisfied in this case.

2 p

Insight 3: Turning codes into lattices

Need a different approach to amplify the approximation factor of SVP!

t
  

(binary
code)

G

C

Idea: Apply Khot’s approach to
reduce from NCP to SVP !

Can ensure Haviv-Regev tensoring
conditions are satisfied in this case.

2 p

(construction A)

L = 2(C(G) + 2ℤn) 2t

Insight 3: Turning codes into lattices

Need a different approach to amplify the approximation factor of SVP!

t
  

(binary
code)

G

C

Idea: Apply Khot’s approach to
reduce from NCP to SVP !

Can ensure Haviv-Regev tensoring
conditions are satisfied in this case.

2 p

(construction A)

L = 2(C(G) + 2ℤn) 2t

s

(locally dense)

L′￼ = BCH + 2ℤm

Insight 3: Turning codes into lattices

Need a different approach to amplify the approximation factor of SVP!

t
  

(binary
code)

G

C

Idea: Apply Khot’s approach to
reduce from NCP to SVP !

Can ensure Haviv-Regev tensoring
conditions are satisfied in this case.

2 p

(construction A)

L = 2(C(G) + 2ℤn) 2t

 Conclusion: -SVP is -hard for

all and all approx factor .

γ p W[1]
p > 1 γ > 1

s

(locally dense)

L′￼ = BCH + 2ℤm

Wrapping up

• Deterministic FPT reductions?

Unknown for SVP even in the unparameterized setting!

• -hardness of -SVP for all approximation factors ?

The last missing puzzle piece!

W[1] γ 1 γ > 1

Wrapping up

Thanks!

• Deterministic FPT reductions?

Unknown for SVP even in the unparameterized setting!

• -hardness of -SVP for all approximation factors ?

The last missing puzzle piece!

W[1] γ 1 γ > 1

