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Abstract

This thesis is concerned with information-theoretic secret-key agreement:
Alice and Bob want to agree, through public communication, on a
shared secret-key about which a computationally-unbounded adver-
sary, Eve, learns almost no information. We work in the source model,
where Alice, Bob, and Eve have access to sources of randomness. Each
source emits independent and identically distributed realizations of a
random variable to its corresponding party. The three sources are cor-
related, in the sense that their underlying random variables are jointly
distributed according to some probability distribution. To such a dis-
tribution we can assign its secret-key rate, which is the best rate (per
number of realizations) at which Alice and Bob can create secret-key
bits, while ensuring that Eve learns almost nothing about them. Our
main focus will be the study of this fundamental quantity for different
types of distributions.

We first consider the satellite setting, where a random bit is sampled (e.g.
by a satellite), and then sent to the three parties via different binary
symmetric channels. We start by surveying the main known results
about the secret-key rate in this setting. Then, we show that the main
ideas behind the parity-check protocol for advantage distillation can be
extended in a natural way to yield an improved protocol. Finally, we
study what happens when the satellite is allowed to choose the quality
of the channels to Alice, Bob, and Eve, as long as Eve’s channel is
always D times better than Alice’s and Bob’s. Of particular importance,
we establish the exact asymptotic behavior of the secret-key rate per
time unit in this setting as a function of the quality ratio D, which also
settles a conjecture proposed by Gander and Maurer.

In the second part, we study the secret-key rate for general distribu-
tions. First, we survey the best known upper-bounds on the secret-key
rate and bound information: Do there exist distributions which require
secret common information between Alice and Bob to be created, but
from which no secret-key can be extracted? Finding a distribution
where one of these upper-bounds is zero while another one is posi-
tive implies that this conjecture is true. Our results show that such a
separation is unlikely to exist between the most tractable upper bounds
considered, and that, if it does exist, then proving its existence ought to
be a very complex task. Next, we analyze a class of distributions which
is believed to have bound information and, in particular, provide fur-
ther evidence for this via connections to non-interactive correlation dis-
tillation and entanglement distillation. To conclude, we discuss relaxed
notions of secret-key rate, in particular the deterministic secret-key rate,
for which Alice and Bob can only use deterministic protocols. We study
the limit of a technique of Ozols, Smith, and Smolin for finding distri-
butions with positive secret-key rate but zero deterministic secret-key
rate, and give evidence for the existence of a candidate distribution for
the separation which is beyond this limit through a connection to the
communication for omniscience by a neutral observer problem.

i





Contents

Contents iii

Acknowledgements 1

1 Introduction 3

2 Notation and background 9
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Information theory . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Information-theoretic secret-key agreement . . . . . . . . . . . 19
2.5 Entanglement distillation . . . . . . . . . . . . . . . . . . . . . 24

3 A concrete challenge – the satellite setting 27
3.1 The satellite setting and advantage distillation . . . . . . . . . 27
3.2 The repeater-code protocol . . . . . . . . . . . . . . . . . . . . 29
3.3 The parity-check protocol . . . . . . . . . . . . . . . . . . . . . 36
3.4 Block-length 2 is not always optimal for the parity-check pro-

tocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5 Modifying the parity-check protocol . . . . . . . . . . . . . . . 43
3.6 The secret-key rate per time unit under a channel quality con-

straint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 A general challenge – when is secret-key agreement possible? 65
4.1 Better upper bounds for the secret-key rate . . . . . . . . . . . 65
4.2 The positivity conjecture and bound information . . . . . . . 71
4.3 A candidate for bound information . . . . . . . . . . . . . . . 82
4.4 Relaxing bound information . . . . . . . . . . . . . . . . . . . . 91

Bibliography 103

iii





Acknowledgements

I would like to start by thanking my supervisors, Daniel and Ueli, for the
many discussions where interesting ideas arose, and for giving me the free-
dom to pursue my own ideas as well. I also want to thank Ueli for guiding
me throughout my time in Zurich, and for always keeping the door open
for me. His guidance has turned me into a much more confident researcher.

I had my first taste of research during my undergraduate studies in Lisbon.
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Chapter 1

Introduction

Alice is preparing a surprise birthday party for Eve. She wants to tell Eve’s
friend, Bob, about all the details. There is a problem, though: Eve is nearby,
and so she might hear Alice speaking to Bob. The surprise would be ruined!

In order to avoid this, Alice wants to encrypt her message to Bob in a way
that Eve learns only a negligible amount of information about its content.
If Alice and Bob share a secret-key, with the same length as the message,
about which Eve has almost no information, then Alice can use the one-
time pad [43] to transmit her message in a secure manner to Bob over an
authenticated noiseless channel (a channel Eve can listen in to, but cannot
tamper). Therefore, Alice and Bob only need to worry about secret-key agree-
ment: They want to agree, through an authenticated noiseless channel, on a
shared secret-key about which Eve learns only negligible information.

Alice and Bob could use the Diffie-Hellman secret-key agreement proto-
col [8] to generate a secret-key, which is widely used in practice. It works
roughly as follows: Alice and Bob select a finite cyclic group G (a finite set
with an operation having some nice properties) and a generator g (every
element of G can be written as gk for some integer k). Then, Alice and Bob
pick secret integers a and b, respectively. Alice computes ga and sends it to
Bob over the channel, and Bob computes gb and sends it to Alice over the
channel. The fulcral observation is that Alice and Bob can now compute gab

– this is their shared secret-key. Eve, on the other hand, sees only ga and
gb. In order for the Diffie-Hellman protocol to be secure, it must be the case
that Eve learns very little about gab from ga and gb.

Eve really hates surprises, though, and she is a very influential individual.
Therefore, she is more than willing and able to amass whatever computa-
tional power she needs to recover the secret-key, if possible. Indeed, Eve
can just compute all powers of g (comparing them with ga and gb, which
she observed), find a and b, and then finally compute gab. This means that
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1. Introduction

we can only hope for security against computationally-bounded adversaries
who are only allowed to run efficient (polynomial-time) algorithms. This cor-
responds to the notion of computational security. Unfortunately, even the as-
sumption that a computationally-bounded Eve learns almost nothing about
gab in the Diffie-Hellman protocol has still not been proven. She could have
access to an efficient algorithm for breaking Diffie-Hellman, for all we know.
This is a general phenomenon: Cryptographic schemes for computational
security all rely on some currently unproven hardness assumption.

Due to all of the above, Alice and Bob are, naturally, not very confortable
with a secret-key agreement protocol for computational security. Even if
the hardness assumption turns out to be correct, Eve can still obtain their
key if she uses enough computational power. They would be much hap-
pier if they could agree on a shared secret-key through public communi-
cation while ensuring that a computationally-unbounded adversary learns
only arbitrarily little amount of information about the secret-key, also with-
out relying on unproven hardness assumptions. This is called information-
theoretic secret-key agreement, and it is the main focus of this thesis. It is a
subset of information-theoretic security, which concerns itself with the general
study of cryptographic schemes secure against computationally-unbounded
adversaries. No matter how much computational power Eve directs towards
breaking such a scheme, she will not succeed.

The Diffie-Hellman protocol only requires that an authenticated noiseless
channel exists between Alice and Bob (besides the unproven hardness as-
sumption mentioned above). Naturally, one may wonder whether such a
channel is also enough for information-theoretic secret-key agreement. Un-
fortunately, this is not the case. In his ground-breaking paper which sparked
the study of information-theoretic security, Shannon [39] proved the fol-
lowing: If there are no a priori assumptions about the secret-key and the
message (other than their length), then Alice and Bob, using an authenti-
cated noiseless channel, can only ensure that Eve learns nothing about the
message from the ciphertext if they already start with a secret-key at least
as long as the message. This implies that information-theoretic secret-key
agreement is impossible using only an authenticated noiseless channel if we
require that Eve learns nothing about the generated key. Furthermore, a re-
sult of Maurer [22] implies that information-theoretic secret-key agreement
is impossible even if we only require that Eve learns sufficiently little infor-
mation about the key. Therefore, we need some additional assumption to
make it possible.

To avoid the impossibility results, we assume that Alice, Bob, and Eve have
access to correlated sources of randomness. The idea here is that each party
receives probabilistic information from its corresponding source, in particu-
lar some information about the other two parties. Exactly how much and
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what kind of information each party receives about the others is specified
by the correlations between sources. This means that, depending on the
sources under consideration, some parties may start with incomplete infor-
mation about the others. Note that this is always the case in practice, due
to the physical limits of information transmission [45], and so our assump-
tion is reasonable. We then obtain the source model for information-theoretic
secret-key agreement, introduced by Maurer [21][22], which we will be work-
ing on. In this model, there exists a two-way authenticated noiseless channel
between Alice and Bob. Moreover, Alice, Bob, and Eve receive several inde-
pendent and identically distributed realizations of random variables X, Y,
and Z, respectively, jointly distributed according to a fixed probability dis-
tribution PXYZ. Obviously, the addition of randomness sources is realistic if
sources exhibiting the distribution under consideration can be found in prac-
tice. Chapter 3 is dedicated to the study of a realistic class of distributions.
Practicality need not be the main motivation behind such a model, though.
The study of general distributions, and pathological ones, has led to exciting
problems, concepts, and techniques in (classical and quantum) information
theory and cryptography, as we shall see in Chapter 4.

We will focus on a well-known fundamental quantity associated to each
probability distribution PXYZ, called the secret-key rate. It was originally
defined in [22][23] (these two definitions were later shown to be equiva-
lent [27]). Informally, it is described in [23] as the optimal number of secret-
key bits Alice and Bob can generate per realization of X, Y, and Z in the
source model while ensuring that Eve learns arbitrarily little information
about them. This quantity is difficult to compute, and it is still unknown for
many classes of distributions.

A more detailed account of the historical context, early developments, and
the most significant models of information-theoretic secret-key agreement
can be found in [45] and [24], on which the exposition above is based.

Fairly recently, results from information-theoretic secret-key agreement, in
particular ones obtained in models where Alice, Bob, and Eve are connected
through noisy channels in some way, such as the influential wire-tap channel
model of Wyner [46], and in the source model described above led to the
emergence of physical layer security. This field focuses on the design and
implementation of practical methods for secure information transmission in
wireless networks, which is of particular importance in an age where the
number of sensitive devices connected to each other is rapidly increasing. A
detailed, recent survey of this area can be found in [33].

The bulk of this thesis (after Chapter 2, which goes over the required tech-
nical background) is divided into two parts with clearly distinct motiva-
tions. In each part, we study an important challenge in information-theoretic
secret-key agreement in the source model. The main difference is that the
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1. Introduction

first challenge is concrete, in the sense that we focus on very specific settings,
while the second challenge is general, because we make almost no assump-
tions about the settings under consideration.

First, in Chapter 3, we study the satellite setting, introduced in [21][22]. Sup-
pose there is a satellite which samples random bits and broadcasts them to
Earth. On the ground, Alice, Bob, and Eve are listening to the satellite with
their respective antennae, and each party receives the random bit with a
certain error probability depending on the quality of its antenna. Then, the
random variables X, Y, and Z correspond to the bits Alice, Bob, and Eve
receive, respectively. This is a conceptually simple setting where computing
the secret-key rate remains an open problem. Moreover, it exemplifies the
power of interaction between Alice and Bob. If only messages from Alice to
Bob are allowed, then secret-key agreement is possible only when Eve’s error
probability is larger than Alice’s and Bob’s. On the other hand, if interaction
is allowed, then secret-key agreement is possible even in cases where Eve’s
error probability is smaller than Alice’s and Bob’s. The concrete challenge
is to obtain better estimates of the secret-key rate as a function of the error
probabilities, better explicit secret-key agreement protocols, and to attempt
to translate the satellite setting into practice.

We begin by surveying fundamental protocols for advantage distillation,
which can then be used to achieve secret-key agreement, namely the repeater-
code protocol [21][22] and the parity-check protocol [21][11]. Then, we show
that the ideas behind the parity-check protocol can be exploited further to
obtain an improved secret-key agreement protocol. The key observation
here is that Alice and Bob throw away many bits during the parity-check
protocol which are still good, in the sense that we can still obtain some extra
secret-key rate from them. Finally, we investigate how the satellite setting
translates into practice. As part of this, we study the secret-key rate per time
unit (instead of per realization) when the satellite is allowed to choose the
error probabilities of all parties under the constraint that Eve’s capacity is D
times larger than Alice’s and Bob’s. We determine the asymptotic behavior
of this notion of secret-key rate as a function of D (it behaves like 1/D), and
show that the parity-check protocol is already very good in practice (its rate
also behaves like 1/D). In the process, we also show that the secret-key rate
per realization of the parity-check protocol in this alternative setting behaves
like 1/D2, settling a conjecture of Gander and Maurer [11].

In Chapter 4, we study a conjectured criterion for the positivity of the secret-
key rate for general distributions and the associated notion of bound informa-
tion. Maurer and Wolf [26] conjectured that the intrinsic mutual information,
an upper bound on the secret-key rate which is relatively tractable, is posi-
tive if and only if the secret-key rate is also positive. The general challenge
is then to verify the validity of this conjecture. It is widely believed that
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this conjecture is false, and so that there exist distributions with bound in-
formation [12], i.e. distributions with positive intrinsic mutual information
but zero secret-key rate. It has proved very challenging to find such a distri-
bution.

We start by introducing some of the best upper bounds on the secret-key
rate, namely the intrinsic mutual information [26], the reduced intrinsic mu-
tual information [35], and a bound due to Gohari and Anantharam [13] (in
increasing order of tightness), and fundamental results about bound infor-
mation. Then, we consider the existence of distributions with positive intrin-
sic mutual information but for which one of the other two bounds above is
zero. This implies that these distributions have bound information. Known
results imply that such distributions do not exist when X, Y, and Z are finite
random variables. We extend this result with respect to the reduced intrinsic
mutual information to the case where only one of X or Y must be finite. We
also show that if there exists a distribution PXYZ having finite X and Y but
unbounded Z with positive intrinsic mutual information and for which the
bound of Gohari and Anantharam is zero, then this should be very hard to
prove, in the sense that the ranges of a sequence of random variables one
must produce in the proof grow very fast, or are infinite. Next, we analyze
a class of distributions, parameterized by a parameter a, which are believed
to have bound information for large enough a. We show that the only clear
possible strategy for secret-key agreement does not work when a is large
enough. We also showcase a connection to non-interactive correlation dis-
tillation [28][47] which gives more evidence for bound information. Finally,
we investigate relaxed notions of secret-key rate, namely the secret-key rate
by public discussion [30] (all auxiliary random variables in a protocol must
be public) and the deterministic secret-key rate (protocols are determinis-
tic), where the latter is a weaker notion than the former. We show that the
techniques from [30] for finding distributions with positive secret-key rate
but zero secret-key rate by public discussion do not work when X and Y
are binary random variables. With this in mind, we provide a candidate
distribution where X and Y are binary with positive secret-key rate which
we believe has zero deterministic secret-key rate. This belief comes from
a connection between the deterministic secret-key rate and the problem of
communication for omniscience by a neutral observer [13].

There are two goals in each part described above. The first goal is to pro-
vide a comprehensive survey of the topic in question, such that a dedicated
reader, armed only with mathematical maturity and the concepts of Chap-
ter 2, can learn the fundamental results of the topic and start his/her own
research. The second goal is to present the results obtained independently
while working on the relevant topic for the thesis. These can be found
mainly in Sections 3.4, 3.5, 3.6, 4.2, 4.3, and 4.4.
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Chapter 2

Notation and background

In this chapter, we introduce some notation and the basic concepts and re-
sults used throughout the thesis.

2.1 Notation

In this section, we fix some notation.

We denote random variables by uppercase letters like X, Y, and Z, and their
ranges are denoted by calligraphic letters X , Y , and Z . In fact, sets are
denoted by calligraphic letters, except for a few special cases. We denote the
set of natural numbers (starting at 0) by N. A set X is countable if there is
a surjection f : N → X . The set of real numbers is denoted by R. The real
closed line R ∪ {−∞, ∞} is denoted by R. When enclosing an interval of
real numbers, parentheses mean that the interval is open on that side, while
square brackets mean that the interval is closed. For example, [0,1) is closed
on the left and open on the right. We denote the set of finite binary strings
by {0, 1}∗. For the cardinality of a set X , we use the symbol |X |. For x ∈ R,
|x| = max(x,−x). The logarithm to the base 2 is denoted by log, and the
natural logarithm is denoted by ln.

Given a string x ∈ {0, 1}∗, its Hamming weight w(x) is defined as

w(x) := |{i : xi 6= 0}|.

An N-tuple (x1, . . . , xN) may be denoted by xN . Collections of random vari-
ables (X1, . . . , XN) may also be denoted by XN .

We denote sequences a1, a2, . . . as (ai). We denote the fact that limi→∞ ai = c
by ai → c. We say that ai ∼ bi if limi→∞

ai
bi
= 1. We say a limit exists if it is

in R, and we say it is finite if it is in R, which we may also denote by L < ∞,
where L stands for a limit. We use lim inf to denote the limit inferior of a
sequence.
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2. Notation and background

Given two functions f , g : N→ R, we say that f = O(g) if there exists c > 0
such that f (n) ≤ cg(n) for all large enough n. We say that f = Θ(g) if
there exist constants c1, c2 > 0 such that c1g(n) ≤ f (n) ≤ c2g(n) for all large
enough n, i.e. if f = O(g) and g = O( f ). We say that f = o(g) if for every
c > 0 there exists n0 ∈N such that f (n) ≤ cg(n) for all n ≥ n0, i.e. if

lim
n→∞

f (n)
g(n)

= 0.

2.2 Probability theory

Information-theoretic security is heavily based on probability theory. In this
section, we cover basic concepts and results from probability theory that will
be useful in the following chapters. A detailed and rigorous introduction to
probability theory can be found in [10].

We assume some very basic familiarity with the concept of a discrete random
variable (a random variable taking on countably many values), and with
events in discrete probability spaces (a set of outcomes in a countable sample
space). A concise introduction to these concepts can be found in [44, Sections
2.2.1 and 2.2.2]. As a matter of uniformity, we use similar notation to [44,
Section 2.2]. Our exposition here will also have some features in common
with, and parts inspired by, that section, since the concepts and results we
require for this thesis overlap those covered in [44, Section 2.2] to a certain
degree.

Given an event A, we denote its probability by Pr[A], i.e. Pr[A] is the sum
of the probabilities of the outcomes in A. The probability that events A and
B both happen is denoted by Pr[A, B]. The probability that at least one of A
and B happens is denoted by Pr[A ∨ B]. Both notations are extended in the
obvious way to a larger set of events.

One of the most useful and basic inequalities in probability theory is the
union bound. It implies that if the probability of each event is small, and
there are not too many events, then the probability that at least one of them
happens is also small.

Lemma 2.1 (Union bound) If A1, . . . , AN is a sequence of events, then

Pr[A1 ∨ · · · ∨ AN ] ≤
N

∑
i=1

Pr[Ai].

We move on to random variables. A discrete random variable X is induced by
a function

PX : X → [0, 1],
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2.2. Probability theory

where X is a countable set, satisfying ∑x∈X PX(x) = 1, which we call the
probability distribution of X, where PX(x) is the probability that X is equal to
x. The range of X is {x ∈ X : PX(x) > 0}, i.e. the set of values X can take. If
the range of X is finite, we say that X is a finite random variable. Throughout
this thesis, random variables will always be discrete, unless stated otherwise.

Indicator variables are simple, but very relevant, examples of discrete ran-
dom variables that we will use later on. Given an event A, the indicator
variable of A, denoted by 1A, is the random variable with range {0, 1} and
probability distribution P such that P(1) = Pr[A] and P(0) = 1− Pr[A].

There are two fundamental quantities associated to a discrete random vari-
able X defined over X ⊆ R. The expected value of X, denoted by E[X], is
defined as

E[X] := ∑
x∈X

PX(x) · x.

Note that the expected value need not be finite, or even exist. However, if
∑x∈X PX(x) · |x| < ∞, then the expected value is well-behaved, and X is
said to be integrable. When it is not clear over which random variable we
are taking the expected value, we may denote the expected value of Y with
respect to X, where Y is a function Y(X) of X, as EX(Y) := ∑x∈X PX(x) ·
Y(x). Intuitively, the expected value of X is the value around which X is
concentrated.

The variance of X, denoted by Var[X], is defined as

Var[X] := E[(X− E[X])2].

Intuitively, the variance of X tells us how tightly X is concentrated around
its expected value. Indeed, small variance leads to tight concentration.

The relationship between the expected value and the variance mentioned
above can be made rigorous by the following inequality, due to Chebyshev.

Lemma 2.2 (Chebyshev’s inequality) Let X be a random variable with range
contained in R. Then

Pr[|X− E[X]| ≥ a] ≤ Var[X]

a2

for all a > 0.

We will be making heavy use of the important Jensen’s inequality, which
relates the image of the expected value of a random variable to the expected
value of its image for a special class of functions. A function f : X → R

with X ⊆ R is said to be convex if, for all λ ∈ [0, 1] and x, y ∈ X ,

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y).
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2. Notation and background

Intuitively, a function is convex if we can connect two points on its graph by
a line segment that always stays above the graph. It is possible to check that
a function f is convex by verifying that its second derivative is non-negative,
if it exists. A function f is said to be concave if − f is convex.

Lemma 2.3 (Jensen’s inequality) Let f : X → R be a convex function with
X ⊆ R, and let X be an integrable discrete random variable defined over X such
that E[X] ∈ X . Then

f (E[X]) ≤ E[ f (X)],

provided that f (X) is also integrable.

Jensen’s inequality is very useful for obtaining lower and upper bounds, for
example when f is a logarithm or a square root.

Two random variables X and Y defined over X and Y , respectively, have a
joint probability distribution PXY defined over X × Y . In particular, this
distribution encodes how much information X gives about Y, and vice-
versa. The distributions of X and Y are induced by PXY by setting PX(x) =
∑y∈Y PXY(x, y). The random variables X and Y are said to be independent if
PXY(x, y) = PX(x)PY(y) for all x ∈ X and y ∈ Y . Intuitively, X and Y are
independent if they give no information about each other. Two important
consequences, based on what we have covered, are that, whenever X and Y
are independent, E[XY] = E[X] · E[Y] and Var[X + Y] = Var[X] + Var[Y].

When we know an event A happened, our knowledge about a random vari-
able X may change. This is modelled by updating the distribution of X. For
an event A with Pr[A] > 0, the conditional distribution of X given A, denoted
by PX|A, is given by

PX|A(x) :=
Pr[X = x, A]

Pr[A]
.

An equivalent characterization of independence between two random vari-
ables X and Y is that PX|Y=y(x) = PX(x) for all x ∈ X and y ∈ Y . We may
also write PX|Y(x, y) for PX|Y=y(x). Two random variables are said to be con-
ditionally independent given A if PXY|A(x, y) = PX|A(x)PY|A(y) for all x ∈ X
and y ∈ Y . Note that if X and Y are independent, it is not necessarily true
that they are conditionally independent given any event A. We define the
expected value of X given A, denoted by E[X|A], as E[X|A] := ∑x PX|A(x) · x.

Sometimes, we will be dealing with a sequence of random variables X1, . . . , XN
such that Xi is obtained by applying some randomized function to Xi−1. In
this case, Xi only depends on X1, . . . , Xi−2 through Xi−1, and so Xi is condi-
tionally independent of X1, . . . , Xi−2 given Xi−1. In other words,

PXi |X1,...,Xi−1
= PXi |Xi−1

holds for all i. Such a sequence is called a Markov chain, and is denoted by
X1 → X2 → · · · → XN . As a special case, a sequence of random variables
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2.3. Information theory

X1, . . . , XN is said to be independent and identically distributed, or i.i.d. for
short, if the probability distributions of all the Xi are the same, and all the
Xi are independent.

We can define a natural distance between discrete probability distributions.
Given two discrete probability distributions P and Q over the same set X ,
the statistical distance between P and Q, denoted by ∆(P, Q), is defined as

∆(P, Q) := ∑
x∈X
|P(x)−Q(x)|.

We remark that the above expression is usually multiplied by 1/2 to normal-
ize the statistical distance, but we opt to drop this factor as it is not relevant
to us. The following properties hold for the statistical distance:

1. ∆(P, Q) = 0 if and only if P = Q;

2. ∆(P, Q) = ∆(Q, P);

3. 0 ≤ ∆(P, Q) ≤ 2;

4. ∆(P, Q) ≤ ∆(P, R) + ∆(R, Q) for all discrete probability distributions
R.

The statistical distance can also be interpreted as the L1 distance in the space
of probability distributions. Moreover, an important property of the statis-
tical distance is that, if ∆(P, Q) ≤ ε, the probabilities P and Q assign to an
event never differ by more than ε/2.

We conclude with a result that is not purely probability theoretic. When
bounding some probabilities later on, it will be useful to know the asymp-
totic behavior of n!.

Lemma 2.4 (Stirling’s approximation) We have

n! ∼
√

2πn
(n

e

)n
.

2.3 Information theory

In this section, we provide an overview of basic results and concepts from
information theory which will be useful in this thesis. A very nice and
complete overview of both introductory and advanced topics in information
theory, on which we base the results we cover, can be found in [6]. A more
general and advanced approach to information theory can be found in [14].

The study of information theory was initiated by Shannon [37][38]. Since
then, it has become an extremely vibrant and influential field.

All the results stated in this section are well-known and hold for finite ran-
dom variables, which will be the main focus of our thesis. However, we
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will work with discrete random variables with infinite ranges in Sections 4.1
and 4.2. Therefore, we present the results in as general form as we will need
them in these sections. We include a detailed proof whenever an extension
is required but it is not straightforward from previous properties.

Fix a discrete random variable X with range X . The Shannon entropy of X, or
entropy for short, denoted by H(X), is defined as

H(X) := − ∑
x∈X

PX(x) log PX(x) = EX[− log PX(X)].

The entropy is a property of the distribution PX, so we may also write H(PX)
for the entropy of X. When considering a conditional distribution PX|A for
some event A, we write H(PX|A) as H(X|A). Intuitively, the entropy of X
measures the uncertainty one has about the value X takes. Since H(X) is a
sum of non-negative real numbers, it follows that H(X) ∈ R, and H(X) ≥ 0.
Note that there exist discrete random variables X with H(X) = ∞. For finite
random variables, the entropy satisfies the following inequalities.

Lemma 2.5 For any finite random variable X with range X ,

0 ≤ H(X) ≤ log |X |.

The case where X has range {0, 1} gives rise to a very important function.
Suppose that PX(1) = p. Then H(X) = h(p), where h : [0, 1] → R is the
binary entropy function, defined as

h(p) := −p log(p)− (1− p) log(1− p).

The binary entropy function is concave, and so, by Jensen’s inequality,

E[h(X)] ≤ h(E[X])

for all random variables with range contained in [0, 1]. Furthermore, h is
symmetric around 1/2, which means that h(p) = h(1− p) for all p ∈ [0, 1].
Another useful property is that, when p ≤ 1/2, we have

p ≤ h(p) ≤ 2p log(1/p).

All these properties will turn out to be extremely useful later in the thesis.

The conditional entropy of X given Y, denoted by H(X|Y), is defined as

H(X|Y) := ∑
y

PY(y)H(X|Y = y).

Intuitively, H(X|Y) is the expected uncertainty we have about X when we
know Y.

14
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A useful concept in information theory and probability theory is the Kullback-
Leibler divergence of two probability distributions P and Q defined over the
same set X , denoted by D(P||Q), and defined as

D(P||Q) := ∑
x∈X

P(x) log
P(x)
Q(x)

,

with the conventions that, if there is x such that P(x) > 0 and Q(x) = 0,
then D(P||Q) = ∞, and that 0 log(0/q) = 0 for all q ∈ [0, 1]. It is possible
to prove, using Jensen’s inequality, that D(P||Q) ≥ 0 whenever D(P||Q)
exists, i.e. whenever D(P||Q) ∈ R. Note also that D(P||Q) = 0 if and only
if P = Q.

There exists a well-known inequality in information theory that relates the
Kullback-Leibler divergence and the statistical distance of two distributions,
called Pinsker’s inequality [32]. Informally, if two distributions have small
Kullback-Leibler divergence, then they also have small statistical distance.
We present a version of Pinsker’s inequality with an improved constant.

Lemma 2.6 (Pinsker’s inequality [6, Lemma 11.6.1]) For any two finite proba-
bility distributions P and Q, we have

log(e)
2

∆(P, Q)2 ≤ D(P||Q).

The mutual information between X and Y, denoted by I(X; Y), is the amount
of information we gain about X when we know Y, and is defined as

I(X; Y) := D(PXY||PXPY).

The mutual information has some useful basic properties, as stated in the
following lemma.

Lemma 2.7 We have

1. I(X; Y) ≥ 0 if it exists;

2. I(X; Y) = 0 if and only if X and Y are independent;

3. I(X; Y) = I(Y; X);

4. If H(X) is finite, I(X; Y) is also finite, and I(X; Y) = H(X)− H(X|Y);

5. If H(X) and H(Y) are finite, I(X; Y) = H(X) + H(Y)− H(XY).

Proof We prove only property 4. Properties 1-3 are straightforward and
property 5 follows in an analogous way to property 4. Suppose H(X) is
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finite. We have

I(X; Y) = ∑
x,y

PXY(x, y) log
PXY(x, y)

PX(x)PY(y)
=

= ∑
x,y

[
PY(y)PX|Y(x, y) log PX|Y(x, y)− PXY(x, y) log PX(x)

]
.

Note that
∑
x,y
−PXY(x, y) log PX(x) = H(X) < ∞.

Thus,
I(X; Y) = H(X) + ∑

x,y
PY(y)PX|Y(x, y) log PX|Y(x, y).

The infinite series in the right hand side is a sum of non-positive terms only.
Therefore, I(X; Y) ∈ R. This implies that I(X; Y) ≥ 0 since the Kullback-
Leibler divergence is always non-negative whenever it exists. Then,

−∑
x,y

PY(y)PX|Y(x, y) log PX|Y(x, y) ≤ H(X) < ∞,

and the desired property follows by noting that

−∑
x,y

PY(y)PX|Y(x, y) log PX|Y(x, y) = H(X|Y).
�

The following lemma states that additional knowledge can only reduce our
uncertainty about a given random variable.

Lemma 2.8 (Conditioning reduces entropy) For any two discrete random vari-
ables X and Y,

H(X) ≥ H(X|Y).

Proof Follows directly from the properties 1 and 4 of Lemma 2.7. �

For an event A, we define I(X; Y|A) := D(PXY|A||PX|APY|A). The conditional
mutual information of X and Y given Z, denoted by I(X; Y|Z), is defined as

I(X; Y|Z) := ∑
z

PZ(z)I(X; Y|Z = z).

We have the following lemma.

Lemma 2.9 If H(X) is finite, then I(X; Y|Z) is also finite, and

I(X; Y|Z) = H(X|Z)− H(X|YZ).

Moreover, if H(Y) is also finite,

I(X; Y|Z) = H(X|Z) + H(Y|Z)− H(XY|Z).
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Proof Note that H(X|Z = z) is finite for all z, since H(X|Z) ≤ H(X). It
follows that

I(X; Y|Z = z) = H(X|Z = z)− H(X|Y, Z = z),

for all z, by Lemma 2.7. Then,

I(X; Y|Z) = ∑
z

PZ(z)(H(X|Z = z)−H(X|Y, Z = z)) = H(X|Z)−H(X|YZ),

which is finite, as desired. The second equality follows in a similar manner.�

The following alternative expression for the conditional mutual information
will be useful,

I(X; Y|Z) = H(XZ) + H(YZ)− H(XYZ)− H(Z),

which holds whenever H(X), H(Y), and H(Z) are finite.

The entropy and the mutual information satisfy chain rules, as stated in the
following lemmas.

Lemma 2.10 (Chain rule for entropy) Given a sequence of discrete random vari-
ables XN , we have

H(XN |Z) =
N

∑
i=1

H(Xi|Xi−1Z),

whenever H(XN) is finite, for all discrete random variables Z.

Proof The equality H(X1X2|Z) = H(X1|Z) + H(X2|X1Z) is a direct conse-
quence of Lemma 2.9 when H(X1X2) is finite, and the general case follows
easily by induction. �

Lemma 2.11 (Chain rule for mutual information) Given a discrete random vari-
able X with H(X) finite, and a sequence of discrete random variables YN , we have

I(X; YN |Z) =
N

∑
i=1

I(X; Yi|Yi−1Z)

for all discrete random variables Z.

Proof Direct consequence of Lemma 2.9 when H(X) is finite. �

The conditional mutual information has two more useful properties. Both
are obtained as easy consequences of the chain rule for mutual information
and the properties of Lemma 2.7. First, the conditional mutual information
is additive in a sense.
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Lemma 2.12 Suppose XN and YN are sequences of random variables such that the
pairs (Xi, Yi) are all conditionally independent given Z. Then,

I(XN ; YN |Z) =
N

∑
i=1

I(Xi; Yi|Z)

whenever either H(XN) or H(YN) is finite.

Proof It suffices to note that

I(XN ; YN |Z) = H(XN |Z)− H(XN |YNZ) =

=
N

∑
i=1

H(Xi|Xi−1Z)− H(Xi|Xi−1YNZ) =

=
N

∑
i=1

H(Xi|Z)− H(Xi|YiZ) =
N

∑
i=1

I(Xi; Yi|Z).

where the first and fourth equalities follow from Lemma 2.9 (because H(XN)
and H(Xi) are finite), the second equality follows from the chain rule, and
the third equality follows from the conditional independence hypothesis. �

Second, the conditional mutual information satisfies some continuity prop-
erty with respect to side information.

Lemma 2.13 For any discrete random variable U,

|I(X; Y|ZU)− I(X; Y|Z)| ≤ H(U)

whenever either H(X) or H(Y) is finite.

Proof We prove only that I(X; Y|ZU) ≤ I(X; Y|Z) + H(U). The lower
bound is analogous. Since the case H(U) = ∞ is trivial, suppose H(U) < ∞.
Then,

I(X; Y|ZU) = H(X|ZU)− H(X|YZU) ≤
≤ H(X|Z)− H(XU|YZ) + H(U|YZ) ≤ I(X; Y|Z) + H(U),

where the equality follows from Lemma 2.9, the first inequality holds be-
cause conditioning reduces entropy, and the second inequality follows by
applying the chain rule to H(XU|YZ). �

Channels are ubiquitous objects in information theory. A discrete memoryless
channel receives a discrete random variable X over a set X as input, and out-
puts a discrete random variable W over a set W according to a distribution
which may depend on the value of X. Therefore, a channel is character-
ized by a conditional probability distribution PW|X. The channel does not
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keep state between inputs, i.e. the output of the channel, W, is conditionally
independent of everything else given its corresponding input, X.

We will be dealing with the binary symmetric channel with error probability
ε (BSCε), which is one of the simplest channels. Both the input and output al-
phabets are {0, 1}, and it is defined by the following conditional probability
distribution,

PW|X(b, b) = 1− ε, PW|X(1− b, b) = ε,

where b ∈ {0, 1}. Intuitively, the BSCε receives a bit and flips it with proba-
bility ε.

A fundamental quantity associated to every channel is its capacity. The
capacity of PW|X, denoted by C(PW|X), is the supremum of all rates at which
one can communicate through the channel with error probability converging
to 0. It was proved by Shannon [37][38] that

C(PW|X) = sup
PX

I(X; W).

In particular, the capacity of the BSCε equals 1− h(ε), where h is the binary
entropy function.

There are other entropy measures beyond Shannon entropy. We will make
use of the so-called min-entropy of X, denoted by H∞(X), which is defined
as

H∞(X) := − log max
x

PX(x).

Random variables X with H∞(X) ≤ k satisfy PX(x) ≥ 2−k for some x. Note
that H∞(X) is defined for all discrete random variables, even if their range is
infinite. This is because, for a discrete random variable X with infinite range,
we must have PX(i)→ 0 as i→ ∞, and so there are only finitely many values
i satisfying PX(i) ≥ a for each a ∈ (0, 1]. It holds that H(X) ≥ H∞(X) for
every discrete random variable X.

2.4 Information-theoretic secret-key agreement

In this section, we introduce the basic concepts and results of information-
theoretic secret-key agreement in Maurer’s source model, which we will be
focusing on in the next chapters, and which we already discussed briefly in
the introduction. This topic has gained significant attention both from the
cryptography and information theory communities. A detailed introduction
to information-theoretic secrecy can be found in [9]. Surveys covering his-
torical context, early results and influential models for information-theoretic
secret-key agreement can be found in [45] and [24].

Maurer first introduced and studied the source model in 1990 [21][22]. In this
model, Alice and Bob are connected by a two-way noiseless authenticated
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channel which Eve has full access to. Furthermore, Alice, Bob, and Eve re-
ceive i.i.d. realizations of discrete random variables X, Y, and Z, respectively,
with joint probability distribution PXYZ. Ahlswede and Csiszár [2] studied
the case where only messages from Alice to Bob are allowed in the source
model.

Throughout this section, we will assume that H(XYZ) is finite. This is
weaker than assuming that X, Y, and Z have finite ranges, and it will prove
to be useful when we have to deal with certain classes of distributions PXYZ
with infinite ranges in parts of Sections 4.1 and 4.2. When the original proof
of a result does not extend directly to distributions such that H(XYZ) is
finite, we provide such an extension.

As previously discussed, a fundamental quantity associated with every dis-
crete probability distribution PXYZ is its secret-key rate, i.e. the optimal rate
(with respect to the number of realizations of X and Y required) at which
Alice and Bob can generate secret-key bits while keeping them secret from
Eve. More precisely, we have the following definition.

Definition 2.14 ([23, Definition 2]) Given a discrete probability distribution PXYZ,
the secret-key rate of X and Y given Z, denoted by S(X; Y||Z), is the supremum
of all real numbers R ≥ 0 such that, for all ε > 0 and all N large enough there
exists a communication protocol for Alice and Bob, who start with N i.i.d. realiza-
tions of X and Y, respectively, with communication C = (C1, C2, . . . , CM), where
the number of messages M is also a random variable, such that

H(Ci|Ci−1, XN , RA) = 0,

for i odd, where RA is the random variable corresponding to Alice’s local random-
ness, and

H(Ci|Ci−1, YN , RB) = 0,

for i even, where RB is the random variable corresponding to Bob’s local randomness.
In other words, the protocol proceeds in an alternating style, with Alice sending the
odd-numbered messages, and Bob the even-numbered ones for a finite number of
steps. We further require that H(RA) and H(RB) be finite. Eve, on the other hand,
has access to N i.i.d. realizations of Z, and observes the communication C. At the
end of the protocol, Alice and Bob must produce finite random variables S and S′,
respectively, with S having range S , such that

H(S|C, XN , RA) = 0,

and
H(S′|C, YN , RB) = 0.

Furthermore, S and S′ must satisfy the following properties:

1. H(S) ≥ N(R− ε);
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2. H(S) ≥ log |S| − ε;

3. Pr[S = S′] ≥ 1− ε;

4. I(S; ZNC) ≤ ε.

Note that Definition 2.14 does not coincide with the original definition of
the secret-key rate in [22, Definition 2], and in fact appears to be much
stronger. Originally, only the rate at which Eve learns information about the
key was bounded, i.e. property 4 in Definition 2.14 was instead I(S; ZNC) ≤
εN. From a cryptographic point of view, bounding the rate is not enough,
since Eve could still learn a significant amount of information about the
key [22]. Furthermore, the condition for almost-uniformity (property 2 in
Definition 2.14) was not enforced.

This gave rise to an initial distinction between the weak secret-key rate, corre-
sponding to the definition in [22, Definition 2], and the strong secret-key rate,
first introduced in [23, Definition 2] and corresponding to Definition 2.14. It
turns out that such a distinction is not necessary, since Maurer and Wolf [27,
Theorem 1] proved that the two rates are the same. In other words, the
secret-key rate is not affected by requiring that the stronger properties (2
and 4) hold, and so we can always work with the stronger notion of secrecy.

The following lemma presents lower and upper bounds for the secret-key
rate. The lower bound was proved by Maurer in [22] (originally for the weak
secret-key rate) and in [23] (for the strong secret-key rate), with a simplified
proof by Wolf [44], and also by Ahlswede and Csiszár [2] (initially only for
the weak secret-key rate). The upper bound was proved by Maurer [22].

Lemma 2.15 ([22, Theorem 2] and [23, Theorem 4]) We have

S(X; Y||Z) ≥ max(I(X; Y)− I(X; Z), I(X; Y)− I(Y; Z))

and
S(X; Y||Z) ≤ min(I(X; Y), I(X; Y|Z)).

Proof In [36, Theorems 1 and 2], Renner and Wolf state that the bounds of
this lemma hold for all discrete probability distributions. We prove this by
examining and/or extending the original proofs.

For the upper bound, the proof by Maurer [22, Theorem 2] can be seen to
hold whenever H(X) and H(Y) are finite. Alternatively, we can also take the
bound when X, Y, and Z is finite and extend it to the case where only one
of X and Y is necessarily finite (and the other random variables can have
unbounded range) without making any assumptions about finite entropies.
In fact, the results we obtain in Section 4.2 are directed at distributions PXYZ
where one of X or Y is finite, and so this alternative would also be enough.
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For the lower bound, the proofs by Maurer [23, Theorem 4] and Wolf [44,
Theorem 4.7] hold whenever X, Y, and Z are finite random variables. We
first extend the bound to the case where Z has unbounded range and X,
Y are finite. Then, we extend it to the case where X, Y, and Z all have
unbounded ranges.

Suppose X and Y are finite random variables, and Z has unbounded range.
Fix α > 0 and kα such that Pr[Z ≤ kα] > 1− α. Let Zα be the random variable
such that Zα = Z if Z ≤ kα and Zα = ⊥ otherwise. Furthermore, consider
Uα such that Uα = ⊥ if Zα 6= ⊥ and Uα = (X, Y) otherwise. Then,

S(X; Y||Z) ≥ S(X; Y||ZαUα),

because if Eve knows Uα = (X, Y) and Zα = ⊥ then she can simulate Z
perfectly and discard Uα, which would leave her in the original situation.
Since ZαUα is a finite random variable, we have

S(X; Y||ZαUα) ≥ I(X; Y)− I(X; ZαUα) = H(X|ZαUα)− H(X|Y).

Now it suffices to note that

H(X|ZαUα) = ∑
z≤kα

Pr[Z = z]H(X|Z = z),

and so H(X|ZαUα)→ H(X|Z) as α→ 0. Therefore,

S(X; Y||Z) ≥ I(X; Y)− I(X; Z),

and the symmetric bound follows in the same way.

Suppose now that X, Y, and Z have unbounded ranges. Fix α > 0 and kα

such that
Pr[X ≤ kα] > 1− α and Pr[Y ≤ kα] > 1− α.

Let Aα be the indicator variable of the event that X and Y are in {0, . . . , kα}.
Furthermore, let Xα, Yα, and Zα denote X, Y, and Z conditioned on Aα = 1.
By the union bound we have Pr[Aα = 1] > 1 − 2α. If we consider the
case where Alice and Bob keep realizations of X and Y only if they lie in
{0, . . . , kα}, we obtain

S(X; Y||Z) > (1− 2α)S(Xα; Yα||Zα) ≥ (1− 2α)(I(Xα; Yα)− I(Xα; Zα)). (2.1)

We can rewrite Inequality 2.1 as

S(X; Y||Z) > (1− 2α)(I(X; Y|Aα = 1)− I(X; Z|Aα = 1)).

Then it suffices to note that, when α→ 0,

I(X; Y|Aα = 1)→ I(X; Y) (2.2)
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and
I(X; Z|Aα = 1)→ I(X; Z). (2.3)

To see that 2.2 holds, write

I(X; Y|Aα = 1) = H(X|Aα = 1) + H(Y|Aα = 1)− H(XY|Aα = 1).

Then we can compute the limit for each quantity in the right-hand side. We
show only that H(X|Aα = 1) → H(X). The same reasoning can be applied
in an analogous manner to the other quantities. We have

H(X|Aα = 1) ≤ H(X)

1− 2α
→ H(X)

and

H(X|Aα = 1) = ∑
x≤kα

PX|Aα=1(x) log
1

PX|Aα=1(x)
=

= log(Pr[Aα = 1]) + ∑
x≤kα

PX|Aα=1(x) log
1

Pr[X = x, Aα = 1]
≥

≥ log(1− 2α) + ∑
x≤kα

Pr[X = x, Aα = 1] log
1

PX(x)
.

It holds that

Pr[X = x, Aα = 1] = ∑
y≤kα

PXY(x, y)→ PX(x)

as α→ 0. Thus,

∑
x≤kα

Pr[X = x, Aα = 1] log
1

PX(x)
→ H(X),

and so H(X|Aα = 1) → H(X) too. The limit in 2.3 follows by the same
reasoning.

Combining 2.1, 2.2, and 2.3 we conclude that

S(X; Y||Z) ≥ I(X; Y)− I(X; Z).

The symmetric lower bound follows analogously. �

There exist some details which are ignored when proving the upper bound
of Lemma 2.15, but which we feel deserve a careful discussion. The proof
in question (see the proof of [22, Theorems 1 and 2]) considers Alice’s and
Bob’s local randomness RA and RB as part of XN and YN , respectively. In
order for the proof to go through, it is necessary to enforce that H(RA) and
H(RB) are finite. This is one of the reasons why such a condition is added
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in the definition of the secret-key rate. Another reason is concerned with
practicality, since in a sensible application a party would not extract infinite
entropy from a randomness source.

In general, the bounds of Lemma 2.15 are not tight, and they do not neces-
sarily tell us whether S(X; Y||Z) > 0. In fact, we can have S(X; Y||Z) > 0
while the left-hand side is negative, and S(X; Y||Z) = 0 while the right-hand
side is positive.

As we have discussed before, Ahlswede and Csiszár [2] studied secret-key
agreement in the source model when only communication from Alice to Bob
is allowed.

Definition 2.16 ([2, Definition 2.1]) Given a discrete probability distribution PXYZ,
the one-way secret-key rate of X and Y given Z, denoted by Sow(X; Y||Z), is
defined like S(X; Y||Z), except that we only allow protocols where Ci = ⊥ with
probability 1 for all even i, i.e. we consider only communication protocols with one-
way communication from Alice to Bob.

It follows immediately from the definition that Sow(X; Y||Z) ≤ S(X; Y||Z).
There exists a single-letter characterization of the one-way secret-key rate,
shown by Ahlswede and Csiszár.

Lemma 2.17 ([2, Theorem 1]) For every finite distribution PXYZ we have

Sow(X; Y||Z) = sup
U→T→X→YZ

[I(T; Y|U)− I(T; Z|U)],

where the supremum is taken over all finite random variables U and T such that
U → T → X → YZ holds. Moreover, the supremum is actually a maximum over
finite random variables U and T with ranges U and T such that |U |, |T | ≤ |X |.

2.5 Entanglement distillation

In this section we introduce some results related to entanglement distillation,
specialized for our needs in Section 4.4. We assume familiarity with some
very basic concepts of quantum computation, which can be found in [29,
Chapter 2]. The following exposition is partly based on [30], [12, Section
2.3], and [29, Section 12.5.3]

Suppose Alice, Bob, and Eve have access to their own subsystem of a tripar-
tite pure quantum state |ϕ〉. The goal of entanglement distillation is for Alice
and Bob to distill some maximally entangled bipartite quantum states, that
are completely disentangled from Eve’s environment, from several copies of
|ϕ〉, solely through local (quantum) operations and classical communication
between themselves. More precisely, Alice and Bob want to obtain states of
the form

|ψ−〉 :=
|01〉 − |10〉√

2
,
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which are not entangled with Eve’s environment.

A concept which is intimately connected with entanglement distillation is
the trace over Eve’s environment of |ϕ〉. For our purpose of analyzing the
results of [30], |ϕ〉 will be of the form

|ϕ〉 = |ϕXYZ〉 := ∑
x,y,z

√
PXYZ(x, y, z)|xyz〉,

for some finite distribution PXYZ. Then, in our case, the trace over Eve’s
environment of |ϕ〉, which we denote by ρXY, is the density matrix

ρXY := ∑
z

∑
x,x′,y,y′

√
PXYZ(x, y, z)PXYZ(x′, y′, z)|xy〉〈x′y′|.

Note that ρXY can be represented by a |X ||Y| × |X ||Y| matrix, where X
and Y are the ranges of X and Y, respectively. The partial transpose with
respect to Bob of |xy〉〈x′y′|, denoted by (|xy〉〈x′y′|)>B , is the linear operator
satisfying

(|xy〉〈x′y′|)>B := |xy′〉〈x′y|.

We then have the following definition.

Definition 2.18 ([29, Adaptation of definition in Section 12.5.3]) The entan-
glement distillation rate of a tripartite quantum state |ϕ〉, denoted by D(|ϕ〉),
is the supremum of all rates at which Alice and Bob can create |ψ−〉 states from
several instances of ρXY through local operations and classical communication.

The following theorem is a specialization of several results regarding en-
tanglement distillation and separability criteria, most notably the so-called
PPT-condition of Horodecki and Peres [17][31].

Theorem 2.19 (First statement follows from [31], equivalence proved in [18])
Given a finite distribution PXYZ, we have that D(|ϕXYZ〉) = 0 if ρ>B

XY has no nega-
tive eigenvalues. Moreover, if |X | = |Y| = 2, this is an equivalence.
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Chapter 3

A concrete challenge – the satellite
setting

In this chapter we study one of the most basic settings for information-
theoretic secret-key agreement in the source model – the satellite setting,
which was introduced by Maurer [21][22]. While there exist nice results in
this setting, there is still much progress to be done. For example, we know
when the secret-key rate is positive in the satellite setting, but a formula
for computing the exact secret-key rate (or even a decent approximation!)
is still unknown. Studying and improving known protocols for secret-key
agreement in this setting helps us understand the secret-key rate better and
get closer to an exact characterization.

We introduce the satellite setting and advantage distillation in Section 3.1.
In Sections 3.2 and 3.3 we provide a detailed analysis of two protocols for
advantage distillation which will influence the rest of the chapter. In Sec-
tion 3.4 we provide an example of a setting where the parity-check protocol
with block-length 3 and 2 rounds is superior to the parity-check protocol
with block-length 2 and any number of rounds. In Section 3.5, motivated by
Section 3.4, we present a natural modification of the parity-check protocol
with block-length k > 2 which strictly improves on the original parity-check
protocol. Finally, in Section 3.6, we translate the satellite setting to practice.
We determine the asymptotic behavior of the secret-key rate per time unit
when the satellite is allowed to choose the error probabilities subject to a
constraint on the ratio of the channel capacities.

3.1 The satellite setting and advantage distillation

Consider the following setting with three parties Alice, Bob, and Eve. Al-
ice and Bob share an authenticated noiseless channel which Eve can listen
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to. Furthermore, Alice, Bob, and Eve receive i.i.d. realizations of random
variables X, Y, and Z, respectively, which are generated as follows:

1. A bit R is sampled uniformly at random from {0, 1};

2. The bit R is sent to Alice through a BSCεA , to Bob through a BSCεB , and
to Eve through a BSCεE . The random variables X, Y, and Z correspond
to the output of each of these channels, respectively.

We can assume without loss of generality that εA, εB, εE ∈ [0, 1/2], since
otherwise Alice, Bob, or Eve can just flip the bit they receive.

This is the so-called satellite setting, which was introduced and first studied
by Maurer [21][22]. Its name derives from the fact that a possible physical
realization of such a setting would be to have a satellite in space sample the
bit R, and then broadcast it to Earth [22]. Then, the reliability with which
Alice, Bob, and Eve receive R depends on the quality of their respective
antennae. The better the antenna, the smaller the error probability when
receiving R.

The significance of this setting comes from the fact that it is a simple example
where one-way secret-key agreement is impossible under some conditions,
while secret-key agreement with interaction is possible except in some trivial
cases. More precisely, the following theorem, proved by Maurer [22], holds.

Theorem 3.1 ([22, Theorem 5], rewritten) In the satellite setting, it holds that
Sow(X; Y||Z) = 0 if εE ≤ εA and εE ≤ εB. On the other hand, we have
S(X; Y||Z) > 0 if and only if εE > 0, εA < 1/2, and εB < 1/2.

Recall the following lower bound on the secret-key rate from Lemma 2.15,

S(X; Y||Z) ≥ max(I(X; Y)− I(X; Z), I(X; Y)− I(Y; Z)). (3.1)

If εE ≤ εA and εE ≤ εB, the lower bound in Inequality 3.1 vanishes. There-
fore, in this situation it is not a priori obvious how to prove that the secret-
key rate is positive.

Suppose εA ≤ εB, εE ≤ εA, and εE ≤ εB. A possible way of achieving a
positive secret-key rate in this situation is to have Alice and Bob run an in-
teractive protocol such that, at the end, the three parties are in a situation
where Bob has more knowledge about Alice’s information than Eve does.
This discrepancy between advantages can then be exploited to generate a
secret-key. Such a protocol is called a protocol for advantage distillation. More
precisely, starting with N realizations XN and YN each, for fixed N large
enough, Alice and Bob agree, through public discussion, on random vari-
ables X̂ and Ŷ, respectively, such that, if Ẑ denotes Eve’s total information
about X̂ and Ŷ,

I(X̂; Ŷ)− I(X̂; Ẑ) > 0,

28



3.2. The repeater-code protocol

i.e. such that Bob has more information about X̂ (via Ŷ) than Eve does (via
Ẑ). It then follows that

S(X; Y||Z) ≥ S(X̂; Ŷ||Ẑ)
N

≥ I(X̂; Ŷ)− I(X̂; Ẑ)
N

> 0.

While a protocol for advantage distillation which yields a positive lower-
bound for the secret-key rate is enough to show that secret-key agreement
is possible in the given setting, it is also of interest to find increasingly more
efficient protocols, since they yield improved lower bounds for the secret-
key rate. Another goal is to find explicit protocols, and not merely prove
that they exist.

3.2 The repeater-code protocol

In this section we present the repeater-code protocol for advantage distilla-
tion, which was used by Maurer [22] and Maurer and Wolf [25] to show that
the secret-key rate in the satellite setting is positive even if Eve has a lower
error probability than Alice and Bob.

Fix an integer N, and suppose Alice, Bob, and Eve have access to N i.i.d.
realizations XN , YN , and ZN , respectively. The repeater-code protocol works
as follows:

1. Alice samples a bit CA ∈ {0, 1} uniformly at random, and sends C′ =
CA ⊕ XN to Bob over the authenticated channel.

2. Bob accepts publicly if the bits of C′ ⊕ YN all coincide (let CB be such
that C′ ⊕YN = (CB, . . . , CB)). Otherwise, Bob rejects publicly.

3. If Bob accepts, Alice sets X̂ = CA, and Bob sets Ŷ = CB. If Bob rejects,
X̂ and Ŷ are both set to ⊥.

Another way of looking at this protocol, which gives it its name, is that
Alice picks a codeword of a repeater-code uniformly at random, and sends
each bit to Bob through a binary symmetric channel with error probability
Pr[X 6= Y]. Bob accepts if he sees a codeword of the repeater-code. Note
that, given that Bob accepts, he decodes the codeword correctly if Xi = Yi
for all i, and incorrectly if Xi 6= Yi for all i.

Intuitively, as discussed in [22], the repeater-code protocol should work for
large enough N because Bob only accepts when he is very confident about
CA, as the probability that Xi = Yi for all i is much larger than the probability
that Xi 6= Yi for all i. Moreover, the event of Bob accepting is independent of
how well ZN estimates XN . Therefore, while Eve has more confidence about
CA when averaging over all possible outcomes, it makes sense that this does
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not hold if we average only over outcomes where Bob accepts, for N large
enough.

In the remainder of this section, we will take a closer look at the technical
details of the repeater-code protocol. Consider X̂ and Ŷ as defined above, fix
a number of realizations N, and let A be the indicator variable of the event
that Bob accepts a run of the repeater-code protocol with N realizations, i.e.
A := 1{X̂ 6=⊥}. We define ε := Pr[X 6= Y] = εA(1− εB) + (1− εA)εB. Further-
more, we denote the probability that Bob accepts a run of the repeater-code
protocol with N realizations as pa,N , which satisfies

pa,N = Pr[A = 1] = εN + (1− ε)N .

Many quantities in this discussion will depend on N, εA, εB, and εE. For
simplicity, we do not usually make this dependence explicit in their names,
although they can be easily discerned via their definitions. Such parameters
will remain fixed throughout the discussion.

We first carefully derive the formula for I(X̂; Ŷ)− I(X̂; Ẑ) determined in [22],
where Ẑ = [ZN , CA ⊕ XN , A] is Eve’s total information, for various reasons:
First, it helps us understand the inner workings of the protocol, and in par-
ticular it helps us determine the optimal strategy for Eve, which Maurer and
Wolf [25] use to prove that the protocol indeed achieves advantage distilla-
tion. Second, this derivation (and the optimal strategy) will be a basis for
the analysis of the protocols in Sections 3.3 and 3.5.

It came to our attention in the final stages of this thesis that a similar deriva-
tion can already be found in [3, Propositions 4.3 and 4.4]. We opt to still
include our derivation here. This is mainly for completeness of our expo-
sition, since it is a well-known result with a natural proof, and because, as
already mentioned, it will be an important building block in the following
sections.

First, note that

I(X̂; Ŷ)− I(X̂; Ẑ) = I(X̂; Ŷ|A)− I(X̂; Ẑ|A), (3.2)

since

I(X̂; Ŷ|A) = H(X̂A) + H(ŶA)− H(X̂ŶA)− H(A) = I(X̂; Ŷ)− H(A),

as A is completely determined from one of X̂, Ŷ, and Ẑ. Analogously,
I(X̂; Ẑ|A) = I(X̂; Ẑ)− H(A). Furthermore,

I(X̂; Ŷ|A = 0) = I(X̂; Ẑ|A = 0) = 0,

since, conditioned on A = 0 (Bob rejects), X̂ = Ŷ = ⊥. Therefore,

I(X̂; Ŷ)− I(X̂; Ẑ) = pa,N(I(X̂; Ŷ|A = 1)− I(X̂; Ẑ|A = 1)).
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For ease of notation, we set IB(N) := I(X̂; Ŷ|A = 1), for X̂ and Ŷ ob-
tained from running the repeater-code protocol with N realizations, and
analogously we set IE(N) := I(X̂; Ẑ|A = 1).

Note that IB(N) = H(X̂|A = 1)− H(X̂|Ŷ, A = 1). To compute H(X̂|A = 1),
note that H(X̂|A = 1) = H(CA|A = 1) = 1. Furthermore, note that

βN := Pr[X̂ 6= Ŷ|A = 1] =
εN

pa,N
,

and so H(X̂|Ŷ, A = 1) = h(βN). Therefore,

IB(N) = 1− h(βN).

It remains to find an expression for IE(N). We have

IE(N) = H(X̂|A = 1)− H(X̂|Ẑ, A = 1) = 1− H(X̂|Ẑ, A = 1).

Therefore, we only need to compute H(X̂|Ẑ, A = 1). Given that Bob accepts,
Eve’s total information about X̂ consists of Ẑ = [ZN , CA ⊕ XN , A = 1]. The
next lemma states that Eve can compute CA ⊕ XN ⊕ ZN and then discard
ZN and CA ⊕ XN without any loss of information about X̂.

Lemma 3.2 We have

H(X̂|ZN , CA ⊕ XN , A = 1) = H(X̂|CA ⊕ XN ⊕ ZN , A = 1).

Proof This proof is inspired by part of the proof of [22, Proposition 1]. Let
U := CA ⊕ XN ⊕ ZN . Note that

H(X̂|CA ⊕ XN , ZN , A = 1) =

= H(CA, CA ⊕ XN |U, A = 1)− H(CA ⊕ XN |U, A = 1) =

= H(CA|U, A = 1)+ H(CA⊕XN |CA, U, A = 1)−H(CA⊕XN |U, A = 1),

where the first equality follows from the chain rule for entropy and from the
fact that [CA ⊕ XN , U] completely determines [CA ⊕ XN , ZN ] and vice-versa.
The second equality follows from the chain rule for entropy.

Therefore, it suffices to show that

H(CA ⊕ XN |CA, U, A = 1) = H(CA ⊕ XN |U, A = 1).

Since CA ⊕ XN is uniformly distributed and independent of [CA, U] given
A = 1, it follows that

H(CA ⊕ XN |CA, U, A = 1) = N.

Finally, note that H(CA ⊕ XN |U, A = 1) ≥ H(CA ⊕ XN |CA, U, A = 1), and
thus H(CA ⊕ XN |U, A = 1) = N also. �
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By Lemma 3.2, we have

H(X̂|Ẑ, A = 1) = H(X̂|U, A = 1) =

= ∑
u∈{0,1}N

Pr[U = u|A = 1]H(X̂|U = u, A = 1), (3.3)

where U := CA ⊕ XN ⊕ ZN . Thus, we must compute Pr[U = u|A = 1] and
Pr[X̂ = 0|U = u, A = 1] for every u ∈ {0, 1}N , since

H(X̂|U = u, A = 1) = h(Pr[X̂ = 0|U = u, A = 1]). (3.4)

Note that

Pr[X̂ = 0|U = u, A = 1] =
Pr[X̂ = 0, XN ⊕ ZN = u, A = 1]

Pr[U = u, A = 1]
. (3.5)

In view of this, let pw be the probability of the event that XN ⊕ ZN is a
particular word of weight w and Bob accepts. This probability is the same
for all words of weight w because A = 1 holds if and only if Xi = Yi for all
i or Xi 6= Yi for all i, and in both cases the bits of XN ⊕ ZN are independent
and identically distributed. In order to find a formula for pw, let αrs be the
probability that X⊕Y = r and X⊕ Z = s, for r, s ∈ {0, 1}. Then

α00 = εAεBεE + (1− εA)(1− εB)(1− εE)

α01 = εAεB(1− εE) + (1− εA)(1− εB)εE

α10 = εA(1− εB)εE + (1− εA)εB(1− εE)

α11 = εA(1− εB)(1− εE) + (1− εA)εBεE.

As a result, we have
pw = αN−w

00 αw
01 + αN−w

10 αw
11.

Thus,
Pr[X̂ = 0|U = u, A = 1] =

pw

pw + pN−w
(3.6)

if u has weight w. This follows from Equation 3.5, the fact that

Pr[X̂ = 0, XN ⊕ ZN = u, A = 1] =
1
2

Pr[XN ⊕ ZN = u, A = 1] =
pw

2
,

and finally that

Pr[U = u, A = 1] =

= Pr[X̂ = 0, XN ⊕ ZN = u, A = 1] + Pr[X̂ = 1, XN ⊕ ZN = 1⊕ u, A = 1] =

=
1
2
(pw + pN−w). (3.7)
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Combining 3.3, 3.4, 3.6, and 3.7 yields

IE(N) = 1− ∑
u∈{0,1}N

pw(u) + pN−w(u)

2pa,N
· h
(

pw(u)

pw(u) + pN−w(u)

)
, (3.8)

where w(u) is the weight of u. Since there is a one-to-one correspondence
between words of weight w and words of weight N − w, and since h(p) =
h(1− p), it follows that

IE(N) = 1− ∑
u∈{0,1}N

pw(u)

pa,N
· h
(

pw(u)

pw(u) + pN−w(u)

)
.

Clustering words with the same weight together finally leads to

IE(N) = 1−
N

∑
w=0

(
N
w

)
pw

pa,N
· h
(

pw

pw + pN−w

)
.

This train of thought, besides yielding a tractable formula for both IB(N)
and IE(N), also gives some additional insight about the optimal guessing
strategy for Eve. Lemma 3.2 and Equation 3.6 tell us that, conditioned on
A = 1, the maximum likelihood estimate of X̂ is 0 whenever the weight of
CA⊕XL⊕ZL is smaller than N/2, and 1 when the weight is larger than N/2,
since pw > pN−w if w < N/2, as εA < 1/2 and εB < 1/2. Therefore, Eve’s
optimal guessing strategy for X̂ given that A = 1 in terms of average error
probability, which we denote by γN , is to take the majority of CA⊕XN ⊕ ZN

(with arbitrary tie-breaking).

Maurer and Wolf [25] use these connections to the optimal guessing strategy
to prove that, for large enough N (depending on εA, εB, and εE), we have
IB(N)− IE(N) > 0.

Theorem 3.3 ([25, Consequence of Lemmas 3 and 4]) For any εA < 1/2, εB <
1/2, and εE > 0, we have IB(N)− IE(N) > 0 for large enough even N.

We do not present a full proof of Theorem 3.3 here, because the proof of
the main result of Section 3.5 already uses similar techniques, and so we
believe it is preferable to showcase only the general, intuitive idea of the
proof in [25] first.

In order to prove Theorem 3.3, we first find constants b < c such that Eve’s
optimal average error probability γN and Bob’s error probability βN satisfy

γN ≥ cN > bN ≥ βN (3.9)

for large enough even N. It turns out upper bounding βN is straightforward,
but the lower bound for γN requires a bit more care. Such a lower bound
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can be obtained by focusing on the cases where U has weight N/2, in which
case taking the majority does not help. Finally, we make use of the following
lemma proved by Maurer and Wolf [25]. We reproduce its proof here for two
reasons. First, we need it to show that its hypotheses are too strong, and in
fact a weaker separation between the error probabilities is enough. Second,
it is going to be used again in Section 3.5.

Lemma 3.4 ([25, Lemma 4]) Suppose Alice and Bob run an advantage distillation
protocol with N realizations and, with positive probability, end up with bits X̂ and
Ŷ such that Bob’s error probability between X̂ and Ŷ, denoted βN , and Eve’s optimal
average error probability between her total information Ẑ and X̂, denoted γN , satisfy
the inequalities in 3.9 for large enough N. Let E be the event that Alice and Bob
end up with such bits. Then

I(X̂; Ŷ|E)− I(X̂; Ẑ|E) > 0

holds for large enough N.

Proof (Reproduction of proof in [25]) Note that

I(X̂; Ŷ|E)− I(X̂; Ẑ|E) = H(X̂|Ẑ, E)− H(X̂|Ŷ, E).

We can now use the inequalities in 3.9 to bound both terms. First, we have

H(X̂|Ŷ, E) = h(βN) ≤ h(bN),

since h is increasing in [0, 1/2]. Moreover,

h(bN) = bN log(1/bN) + (1− bN) log(1/(1− bN)) ≤ 2bN log(1/bN)

for large enough N, since p log(1/p) ≥ (1− p) log(1/(1− p)) for p ≤ 1/2.
This is because

f (p) := p log(1/p)− (1− p) log(1/(1− p))

is a concave function in p (it suffices to compute its second derivative), and
f (0) = f (1/2) = 0. Now it suffices to note that

2bN log(1/bN) = bN(2N log(1/b)) < cN

for large enough N.

It remains to bound H(X̂|Ẑ, E). We have

H(X̂|Ẑ, E) = EẐ[h(pe,N(Ẑ))|E],

where pe,N(ẑ) is Eve’s error probability given that Ẑ = ẑ and E both hold.
Then, since Eve’s guessing strategy is optimal, pe,N(ẑ) ≤ 1/2 always holds,
and so

EẐ[h(pe,N(Ẑ))|E] ≥ EẐ[pe,N(Ẑ)|E] = γN ≥ cN ,
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as h(p) ≥ p for p ≤ 1/2, since log(1/p) ≥ 1 for p ≤ 1/2. Therefore,

I(X̂; Ŷ|E)− I(X̂; Ẑ|E) > cN − cN = 0

for large enough N, which concludes the proof. �

Note that Lemma 3.4 can be applied in a more general setting than just the
repeater-code protocol, as long as there is an event with positive probability
(which the parties can check that it occurred) under which we can find a
large enough asymptotic separation between Bob’s and Eve’s error probabil-
ities.

If we analyze the previous proof, it is also clear that we do not require an
exponential separation between the error probabilities. In fact, a superlinear
separation suffices! Suppose we find constants c > 0 and δ > 0 such that

γN ≥ cN >
cN

N1+δ
≥ βN

for large enough N. Then we can proceed exactly like in the proof to obtain

h(βN) ≤ h
(

cN

N1+δ

)
≤ 2

cN

N1+δ
log
(

N1+δ

cN

)
(3.10)

for large enough N. Expanding the right side of Inequality 3.10, we get

2
cN

N1+δ
log
(

N1+δ

cN

)
= 2

cN

N1+δ
((1 + δ) log(N) + N log(1/c)),

which we can bound further as

2
cN

N1+δ
((1 + δ) log(N) + N log(1/c)) ≤ cN 4(1 + δ) log(1/c)

Nδ
< cN

for large enough N, since

N log(1/c) > (1 + δ) log(N)

and
Nδ > 4(1 + δ) log(1/c)

for large enough N. The desired result then follows immediately.

We do not make use of this observation in this chapter, but we think it
deserves mention, and might make the analysis of more complex protocols
for advantage distillation much more approachable (for example, potential
extensions of the protocol proposed in Section 3.5).

As a final observation, note that Theorem 3.3 tells us we can find a large
enough even N such that running the repeater-code protocol with N realiza-
tions yields an advantage to Bob against Eve. While this is enough for the
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repeater-code protocol and the goals of this section, it will be required that
Theorem 3.3 actually holds for all large enough N in Section 3.3, since we
will have cases where the proposed protocol “works like” the repeater-code
protocol with an odd number of realizations. Such an extension is relatively
straightforward. If one follows the proof of Theorem 3.3, it is sufficient to
note that, for constants b < c as determined in the proof,

γN+1 ≥
(

N + 1
N/2 + 1

)
αN/2−1

00 αN/2+1
01

εN+1 + (1− ε)N+1 ≥

≥ α01

(1− ε)α00

(
N

N/2

)
αN/2

00 αN/2
01

εN + (1− ε)N ≥ d · cN+1,

for d constant and large enough even N. Then,

d · cN+1 ≥ (c− δ)N+1,

for some δ → 0 as N grows. Thus we can pick c2 := c− δ > b for N large
enough, since c > b for N large enough, and thus γN ≥ cN

2 > bN ≥ βN for
all N large enough.

The repeater-code protocol we analyzed in this section meets its goal of
showing that secret-key agreement is possible in the satellite setting under
very general conditions, but only implies the lower bound

pa,N

N
(IB(N)− IE(N)),

where pa,N decreases roughly like (1− ε)N . Furthermore, the protocol re-
quires local randomness on Alice’s part. A natural question arises: is there
a more efficient protocol (in terms of the resulting secret-key rate) which
preferably does not use local randomness? In Section 3.3 we present the
parity-check protocol, which answers this question positively.

3.3 The parity-check protocol

In this section we present the parity-check protocol, first introduced by Mau-
rer [21] and later studied by Gander and Maurer [11]. This protocol yields
more rate than the repeater-code protocol presented in Section 3.2, and also
has the advantage of not requiring any local randomness.

We showcase a detailed technical analysis of the protocol. Furthermore, we
opt to analyze the general case of the protocol, where there may be k parity-
checks, for some k ≥ 2, instead of only two as in [11], since this general
analysis will be useful in Sections 3.4 and 3.5.

Consider the usual satellite setting of Section 3.1, and suppose Alice, Bob,
and Eve have error probabilities εA < 1/2, εB < 1/2, and εE > 0, and
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furthermore have access to N i.i.d. realizations of X, Y, and Z, respectively.
The parity-check protocol with block-length k, for k ≥ 2, and ` rounds works
as follows:

1. Alice and Bob have initially empty strings S and Ŝ, respectively.

2. Alice and Bob divide XN and YN into tuples (Xki+1, . . . , Xki+k) and
(Yki+1, . . . , Yki+k), respectively, for i = 0, . . . , bN/kc.

3. For each i, Alice sends Xki+1 ⊕ Xki+j, for j = 2, . . . , k, to Bob via the
noiseless authenticated channel.

4. Bob computes the tuple

(Yki+1, Xki+1 ⊕ Xki+2 ⊕Yki+2, . . . , Xki+1 ⊕ Xki+k ⊕Yki+k),

and accepts publicly if and only if all entries have the same value.
Otherwise, Bob rejects publicly.

5. If Bob accepts, Alice adds Xki+1 to her string S, and Bob adds Yki+1 to
his string Ŝ, and they discard the remaining bits. If Bob rejects, Alice
and Bob discard all the relevant bits.

6. If ` = 1, then Alice and Bob stop the protocol. Alice sets X̂ = S and
Bob sets Ŷ = Ŝ.

7. If ` > 1 and |S| ≥ k`−1, Alice and Bob run the parity-check protocol
with block-length k and `− 1 rounds on the strings S and Ŝ. Otherwise,
if |S| < k`−1, then Alice and Bob abort the protocol, and set X̂ = ⊥
and Ŷ = ⊥, respectively.

Intuitively, the parity-check protocol works by applying the repeater-code
protocol to small substrings over many rounds, and discarding the unsuc-
cessful runs. In a sense, this yields an “adaptive” version of the repeater-
code protocol in the following sense: in the original repeater-code protocol,
a bad bit (i.e. Xi 6= Yi) in the middle of many good bits (i.e. Xi = Yi) makes
the protocol fail, while in the parity-check protocol these bad bits can be
successfully removed (if there are not too many), and the protocol is able to
carry on with a smaller string.

We now proceed to the analysis of the protocol. Suppose that Alice and Bob
run the parity-check protocol with block-length k and ` rounds, and end up
with X̂ and Ŷ. Note that X̂ and Ŷ may consist of several bits. An important
observation is that the bits of X̂ are independent and identically distributed.
This is because every bit of X̂ depends on L := k` bits of XN , which are
all independent and identically distributed, and because no two bits of X̂
depend on the same bit of XN . Furthermore, the same holds for the bits
of Ŷ. Finally, Eve’s total information Ẑi about a bit X̂i of X̂ which depends
on bits Xi1 , . . . , XiL of XN , for some sequence (ij), consists of Zi1 , . . . , ZiL , of
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the parities X̂i ⊕ Xij for j = 1, . . . , L (since the parities Eve actually observes
during a run of the protocol can be reconstructed from these parities, and
vice-versa), and the fact that X̂i is part of the final string X̂. Therefore, it
follows that all the Ẑi are also independent and identically distributed.

Just like in Section 3.2, we want to study the behavior of I(X̂; Ŷ)− I(X̂; Ẑ) as
a function of N. Let Tk,` be the random variable corresponding to the length
of X̂ after Alice and Bob run the parity-check protocol with block-length k
and ` rounds. Then, as in Equation 3.2 in Section 3.2, we have

I(X̂; Ŷ)− I(X̂; Ẑ) = I(X̂; Ŷ|Tk,`)− I(X̂; Ẑ|Tk,`),

since Tk,` is fully determined from one of X̂, Ŷ, and Ẑ. Noting that X̂ has
length at most N/L, we have

I(X̂; Ŷ|Tk,`) =
N/L

∑
t=0

Pr[Tk,` = t]I(X̂; Ŷ|Tk,` = t)

and

I(X̂; Ẑ|Tk,`) =
N/L

∑
t=0

Pr[Tk,` = t]I(X̂; Ẑ|Tk,` = t).

Since we have seen above that both the pairs (X̂i, Ŷi) and (X̂i, Ẑi) are i.i.d., it
follows that

I(X̂; Ŷ|Tk,` = t) = t · I(X̂1; Ŷ1),

and
I(X̂; Ẑ|Tk,` = t) = t · I(X̂1; Ẑ1).

Therefore,

I(X̂; Ŷ)− I(X̂; Ẑ) = E[Tk,`](I(X̂1; Ŷ1)− I(X̂1; Ẑ1)).

We can then turn our attention to a single bit X̂1, the corresponding predic-
tion Ŷ1 by Bob, and Eve’s total information about X̂1, Ẑ1. We can assume
without loss of generality that X̂1 depends on the L bits XL := (X1, . . . , XL),
i.e. that X̂1 is the result of running the parity-check protocol on the first L
bits of XN . In this case, we have X̂1 = X1, and Xi is still present in round
2 ≤ r ≤ ` of the parity-check protocol if and only if

i− 1 = 0 mod kr−1.

Therefore, in the first round we have X1, . . . , XL, in the second round we have
X1, Xk+1, X2k+1,, . . . , and so on. The following lemma provides evidence that
the parity-check protocol behaves like the repeater-code protocol in this case.
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Lemma 3.5 Suppose Alice and Bob run the parity-check protocol with block-length
k and ` rounds on XL and obtain X̂ = X1. Then either Xi = Yi for all i = 1, . . . , L
if Ŷ = X̂, or Xi 6= Yi for all i = 1, . . . , L if Ŷ 6= X̂.

Proof In the case where ` = 1, the parity-check protocol coincides with the
repeater-code protocol of length k, and so the desired result follows. If ` > 1,
we can apply the reasoning for ` = 1 iteratively, starting with the last round.
Then, we have that the result holds for the bits present in round `− 1, and
applying the result again to every bit implies that the result holds for the
bits of round `− 2 (this is because either Xi = Yi for all i in round `− 1, or
Xi 6= Yi for all such i), and so on. �

Lemma 3.5 implies that Bob’s error probability about X1 after the parity-
check protocol coincides with the one obtained from running the repeater-
code protocol on XL. In fact, let A be the indicator variable of the event that
X1 is part of X̂ after running the parity-check protocol on XL for ` rounds.
Then

β` := Pr[X1 6= Ŷ1|A = 1] =
εL

εL + (1− ε)L ,

where ε := Pr[X 6= Y] = εA(1− εB) + (1− εA)εB, as in Section 3.2. Therefore,

I(X̂1; Ŷ1) = 1− h(β`) = IB(L), (3.11)

with IB(·) defined as in Section 3.2.

It remains to compute I(X̂1; Ẑ1). The following lemma is very similar to
Lemma 3.2 in Section 3.2, and the proof goes through in the same way.

Lemma 3.6 We have

H(X1|ZL, X1 ⊕ XL, A = 1) = H(X1|X1 ⊕ XL ⊕ ZL, A = 1).

Therefore, Eve can simply compute X1 ⊕ XL ⊕ ZL, and then discard X1 ⊕
XL and ZL without losing any information about X1. Notice that, due to
Lemma 3.5 and Lemma 3.6, we are in the exact same setting as after a suc-
cessful run of the repeater-code protocol. Therefore, Eve’s optimal strategy
is to use the majority of X1⊕XL⊕ ZL as a guess for X1 (again with arbitrary
tie-breaking), and we have

I(X̂1; Ẑ1) = IE(L). (3.12)

Combining Equations 3.11 and 3.12 with Theorem 3.3 (which, as we have
seen, actually holds for all large enough N), it follows that, for any suitable
choice of the error probabilities, there is L large enough so that

I(X̂1; Ŷ1)− I(X̂1; Ẑ1) = IB(L)− IE(L) > 0.
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Finally, we need to compute E[Tk,`]. It turns out that finding an exact ex-
pression for E[Tk,`] is complex, but in our case it suffices to provide suitable
lower and upper bounds, which are given in the following lemma.

Lemma 3.7 If Alice and Bob run the parity-check protocol with block-length k and
` rounds on N realizations, we have

− c
N

+
1
k`

`−1

∏
i=0

(
βk

i + (1− βi)
k
)
≤ E[Tk,`]

N
≤ 1

k`
`−1

∏
i=0

(
βk

i + (1− βi)
k
)

, (3.13)

for some c > 0 which does not depend on N.

Proof We start by noting that, at the beginning of the protocol, Alice and
Bob have N realizations each. Therefore we can set Tk,0 = N with probability
1 and so E[Tk,0] = N.

In order to estimate E[Tk,1], note that if N is not divisible by k we must throw
at most k− 1 realizations away. The remaining realizations are split into k-
tuples, from which a single bit is selected with probability εk + (1− ε)k =
βk

0 + (1− β0)k. Therefore,

βk
0 + (1− β0)k

k
N − k− 1

k
≤ βk

0 + (1− β0)k

k
(N − k + 1) ≤

≤ E[Tk,1] ≤
βk

0 + (1− β0)k

k
N.

We can follow a similar reasoning for E[Tk,`], with ` ≥ 2. In fact,

E[Tk,`] =
N/k`−1

∑
t=0

Pr[Tk,`−1 = t] · E[Tk,`|Tk,`−1 = t].

As before, E[Tk,`|Tk,`−1 = ki + j] = E[Tk,`|Tk,`−1 = ki] for all i and j =
1, . . . , k− 1, since we must throw away the leftover realizations. Therefore,

E[Tk,`] =
N/k`

∑
i=0

k−1

∑
j=0

Pr[Tk,`−1 = ki + j] · E[Tk,`|Tk,`−1 = ki],

and, since

E[Tk,`|Tk,`−1 = ki] =
βk
`−1 + (1− β`−1)

k

k
· ki,

we have

E[Tk,`] =
βk
`−1 + (1− β`−1)

k

k

N/k`

∑
i=0

k−1

∑
j=0

Pr[Tk,`−1 = ki + j] · ki. (3.14)
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It follows, by replacing ki by ki + j− j in Equation 3.14, that

E[Tk,`] =
βk
`−1 + (1− β`−1)

k

k
E[Tk,`−1]−

−
βk
`−1 + (1− β`−1)

k

k

N/k`

∑
i=0

k−1

∑
j=0

Pr[Tk,`−1 = ki + j] · j ≥

≥
βk
`−1 + (1− β`−1)

k

k
E[Tk,`−1]−

1
k

k−1

∑
j=0

j. (3.15)

In view of this, set c′ := 1
k ∑k−1

j=0 j, which is of the order of k.

From 3.15, it follows that

βk
`−1 + (1− β`−1)

k

k
· E[Tk,`−1]− c′ ≤ E[Tk,`] ≤

βk
`−1 + (1− β`−1)

k

k
· E[Tk,`−1].

This recurrence yields

−c +
N
k`

`−1

∏
i=0

(
βk

i + (1− βi)
k
)
≤ E[Tk,`] ≤

N
k`

`−1

∏
i=0

(
βk

i + (1− βi)
k
)

,

for all N and ` with k` ≤ N, and for some c ≤ ∑`−1
i=0 c′/ki ≤ 2c′, which

concludes the proof. �

Let RN,k,` and Rk,` be the left hand and right hand sides of 3.13, respectively.
It immediately follows that

RN,k,`(IB(L)− IE(L)) ≤ E[Tk,`](I(X̂; Ŷ)− I(X̂; Ẑ))
N

≤ Rk,`(IB(L)− IE(L)),

and so, since RN,k,` → Rk,` as N → ∞, we conclude that the parity-check
protocol with block-length k and ` rounds yields a lower bound on the secret-
key rate of

Rk,`(IB(k`)− IE(k`)),

with

Rk,` =
1
k`

`−1

∏
i=0

(
βk

i + (1− βi)
k
)

.

While the protocol presented in this section is a good improvement on
the repeater-code protocol, questions arise: Do we need to consider block-
lengths k > 2, or is the k = 2 version already optimal, at least among all
parity-check protocols with different block-lengths? Furthermore, can one
modify the parity-check protocol in order to improve its efficiency?
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3. A concrete challenge – the satellite setting

In Section 3.4, we show that the parity-check protocol with block-length 2
is not the optimal protocol for all choices of error probabilities. This will
then motivate the analysis of a modified parity-check protocol in Section 3.5,
which further exploits the ideas behind the parity-check protocol in a natural
way.

3.4 Block-length 2 is not always optimal for the parity-
check protocol

In [11], Gander and Maurer conjectured that the secret-key rate of the parity-
check protocol with k = 2 is close to optimal for all choices of the error
probabilities in the satellite setting. In this section, we show that such a
protocol is, in fact, not optimal. We give (uncountably many) examples of
choices of the error probabilities for which running the parity-check protocol
with k = 3 and 1 round is strictly better than running the parity-check
protocol with k = 2 and any number of rounds.

We make use of the formulas for IB(·) and IE(·) derived in Section 3.2, and
also use the formula for Rk,` derived in Section 3.3. The results and plots
displayed in this section were obtained from Wolfram Mathematica 10. We
analyzed the following example.

Example 3.8 Consider the satellite setting with εA = εB = 0.1. Figure 3.1 show-
cases the secret-key rates of different versions of the parity-check protocol as func-
tions of εE, which we vary between 0 and 0.1. Note that, for εE roughly between 0.6
and 0.7, the parity-check protocol with k = 3 and ` = 1 is superior to the protocols
with k = 2. Consider the setting with εA = εB = 0.1 and εE = 0.065. Table 3.1
confirms the parity-check protocol with k = 3 and ` = 1 is superior to any protocol
with k = 2.

0.02 0.04 0.06 0.08 0.10
Eve's error

-0.010

-0.005

0.005

0.010

0.015

Secret-key rate

k=2, l=1

k=2, l=2

k=2, l=3

k=2, l=4

k=3, l=1

k=3, l=2

Figure 3.1: Plot of secret-key rates as a function of Eve’s error probability εE with εA = εB = 0.1
for different block-lengths k and number of rounds ` of the parity-check protocol.
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block-length k number of rounds ` secret-key rate
2 1 0.00249
2 2 0.00430
2 3 0.00021
3 1 0.00533
3 2 0.00008

Table 3.1: Comparison of secret-key rates of different parity-check protocols (parameterized by
block-length and number of rounds) in the satellite setting with εA = εB = 0.1 and εE = 0.065.

Since we know that block-length k = 2 is not always optimal, we can turn
our attention to potential improvements to the parity-check protocol when
k > 2. The reason why finding such improvements for k > 2 is more plausi-
ble than for k = 2 is due to the additional degrees of freedom provided by a
larger block-length: for k > 2, Bob can potentially relax the acceptance con-
dition, and obtain some additional good bits (in the sense that they can be
used to increase the secret-key rate) from bits whose parity-checks initially
had some, but few, errors.

Note that relaxing the acceptance condition for the parity-check protocol
with k = 2 is of no help. In fact, suppose Bob receives X1 ⊕ X2, computes
(Y1, X1 ⊕ X2 ⊕ Y2), and notices that there is one error (so the string Bob
computes is either (1, 0) or (0, 1)). This happens if and only if X1 ⊕ X2 6=
Y1 ⊕Y2. In this case, we have

Pr[X1 6= Y1|X1 ⊕ X2 6= Y1 ⊕Y2] =
ε(1− ε)

2ε(1− ε)
=

1
2

.

Therefore, according to Bob’s updated view about XN , both X1 and X2 now
look like uniformly random bits which are independent of Y1 and Y2, respec-
tively. Furthermore, Eve now knows X1 ⊕ X2 and that X1 ⊕ X2 6= Y1 ⊕ Y2,
which also severely limits what common information we can still extract
from those bits.

Nevertheless, we can use this observation to obtain an improved advantage
distillation protocol by considering k > 2, as we shall see in Section 3.5.

3.5 Modifying the parity-check protocol

In this section, we present a modification of the parity-check protocol for
block-lengths k > 2, and then prove and analyze a condition (depending on
the error probabilities and block-length) which implies that this modified
protocol yields a strict improvement over the original one with correspond-
ing block-length.

The intuition behind this modification was discussed at the end of Sec-
tion 3.4. For k > 2, we can try to relax Bob’s acceptance condition for each
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k-tuple whose parities he receives. Consider the case where Bob receives
some parities X1 ⊕ Xj, for j = 2, . . . , k, computes

(Y1, X1 ⊕ X2 ⊕Y2, . . . , X1 ⊕ Xk ⊕Yk),

and notices that k − 1 entries coincide, and one differs. It seems a sub-
optimal decision for Bob to reject this k-tuple. In fact, he has a higher confi-
dence about the value of X1 than before, albeit slightly less than in the case
where all entries coincide. Therefore, it is plausible that Bob, instead of out-
right rejecting such k-tuples, can move the first bit into a separate “bucket”,
on which he can possibly run the original parity-check protocol for a large
enough number of rounds to extract some extra secret-key rate, as long as
the number of errors reported is not too large.

Consider the satellite setting where Alice, Bob, and Eve have error probabili-
ties εA < 1/2, εB < 1/2, and εE > 0, respectively. Furthermore, suppose the
three parties have access to N i.i.d. realizations of X, Y, and Z, respectively.
Taking into account this intuition, the modified parity-check protocol with
block-length k, error bound D < k/2, and (`0, `1, . . . , `D) rounds works as
follows:

1. Alice and Bob start with empty ordered sets (we shall call them buck-
ets) Bj, for j = 0, . . . , D.

2. Alice and Bob divide XN and YN into tuples (Xki+1, . . . , Xki+k) and
(Yki+1, . . . , Yki+k), respectively, for i = 0, . . . , bN/kc.

3. For each i, Alice sends Xki+1 ⊕ Xki+j, for j = 2, . . . , k, to Bob via the
noiseless authenticated channel.

4. Bob computes the tuple

W = (Yki+1, Xki+1 ⊕ Xki+2 ⊕Yki+2, . . . , Xki+1 ⊕ Xki+k ⊕Yki+k).

Let m be the majority of W. Bob reports d := |{i : Wi 6= m}| publicly.

5. If d ≤ D, Alice puts Xki+1 at the end of her ordered set Bd, and Bob
puts m at the end of his ordered set Bd. Otherwise, Alice and Bob
discard the k-tuple.

6. For every bucket Bd, Alice and Bob run the original parity-check pro-
tocol with block-length k and `d − 1 rounds on the bits of Bd.

7. At the end of the protocol, Alice and Bob hold strings resulting from
running the parity-check protocol on each bucket, which they can con-
catenate and set to X̂ and Ŷ, respectively. They can also compute, for
each X̂i and without interacting, a string path(X̂i) whose j-th entry is
the index of the bucket where X̂i was in round j. Let P be a tuple such
that Pi = path(X̂i) for each i. The final outcome of the protocol for
Alice and Bob is thus (X̂, P) and (Ŷ, P), respectively.
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For a bit X̂i of the final string X̂ which was put in Bd in the first round and
then survived an application of the parity-check protocol with `d− 1 rounds,
we have path(X̂i) = d0`d−1. Note that the definition of path(X̂i) seems to be
a bit redundant. The reason why we chose this particular definition is that
it generalizes very easily to potential extensions of this protocol, where we
can separate bits into different buckets beyond the first round.

Note that bits X̂i such that path(X̂i) = 0`0 went through the original parity-
check protocol. Therefore, the modified parity-check protocol with block-
length k strictly improves on the original protocol with the same block-
length, provided we can show that we can successfully apply the original
protocol to the buckets Bd with d > 0 if we choose `d large enough.

Let Ẑ denote Eve’s total information about X̂, and let Ẑi denote Eve’s to-
tal information about X̂i. Note that, similarly to the original parity-check
protocol of Section 3.3, the triple (X̂i, Ŷi, Ẑi) is conditionally independent of
the tuples (X̂j, Ŷj, Ẑj, path(X̂j)) given path(X̂i), for j 6= i, since the sets of
bits of XN , YN , and ZN they depend on are disjoint. Moreover, for every i
and j, triples (X̂i, Ŷi, Ẑi) and (X̂j, Ŷj, Ẑj) are identically distributed given that
path(X̂i) = path(X̂j).

The secret-key rate of the protocol is

1
N
(I(X̂P; ŶP)− I(X̂P; Ẑ)).

Since P is fully determined by one of (X̂, P), (Ŷ, P), and Ẑ, it follows that

I(X̂P; ŶP)− I(X̂P; Ẑ) = I(X̂; Ŷ|P)− I(X̂; Ẑ|P).

Let TN,k,d,`d be the random variable corresponding to the size of Alice’s final
string generated by running the original parity-check protocol with block-
length k and `d − 1 rounds on the set Bd, starting from N realizations, and
let

Rk,d,`d := lim
N→∞

E[TN,k,d,`d ]

N
be the corresponding compression ratio. Note that TN,k,d,`d also corresponds
to the number of entries i of P such that Pi = d0`d−1, or, equivalently, the
number of X̂i such that path(X̂i) = d0`d−1. By the previous observations,
and similarly to the parity-check protocol of Section 3.3, we have, for a fixed
N,

I(X̂; Ŷ|P)− I(X̂; Ẑ|P) =

=
D

∑
d=0

E[TN,k,d,`d ](I(X̂1; Ŷ1|path(X̂1) = d0`d−1)

− I(X̂1; Ẑ1|path(X̂1) = d0`d−1)),
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and therefore the modified parity-check protocol generates a secret-key rate
of

D

∑
d=0

Rk,d,`d(I(X̂1; Ŷ1|path(X̂1) = d0`d−1)− I(X̂1; Ẑ1|path(X̂1) = d0`d−1)).

(3.16)
An advantage of the reasoning above is that it generalizes directly to the
natural extensions of our protocol which use buckets in more (or all) of their
rounds.

We wish to prove that 3.16 is strictly larger than the rate of the correspond-
ing original parity-check protocol, under suitable conditions on the error
probabilities and error bound. The following theorem provides an easily
checkable condition which implies that Alice and Bob can extract good bits
from Bd by choosing a large enough number of rounds `d for the modified
parity-check protocol. Recall that ε = Pr[X 6= Y] and αrs = Pr[X ⊕ Y =
r, X⊕ Z = s].

Theorem 3.9 Let k > 2, d < k/2, εA = εB = α, and εE be such that

(2
√

α00α01)
1−d/k (1− ε)−d/k > ε1−2d/k,

and suppose Alice holds X̂1 with path(X̂1) = d0`d−1. Furthermore, let Ŷ1 be Bob’s
prediction of X̂1, and let Ẑ1 be Eve’s information about X̂1. Then, for `d large
enough, Bob has more information about X̂1 than Eve does, i.e.

I(X̂1; Ŷ1|path(X̂1) = d0`d−1)− I(X̂1; Ẑ1|path(X̂1) = d0`d−1) > 0.

Before we proceed to the proof of Theorem 3.9, we make some comments,
and then introduce some auxiliary lemmas and notation.

To begin, note that if the condition of Theorem 3.9 holds for some d, then it
also holds for all d′ < d (assuming all other parameters are fixed). In fact, if

(2
√

α00α01)
1−d/k (1− ε)−d/k > ε1−2d/k

holds for some d, then the condition for d− 1,

(2
√

α00α01)
1−(d−1)/k (1− ε)−(d−1)/k > ε1−2(d−1)/k,

is satisfied whenever
2
√

α00α01(1− ε) ≥ ε2,

which always holds, as 2
√

α00α01 ≥ ε and 1− ε ≥ ε are both true. Thus, it
suffices to verify the condition for the largest number of errors allowed, i.e.
for the error bound D. An interesting case arises when we set D = k/3, since,
as we will see, this choice of D already yields protocols which perform better
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than any original parity-check protocol in certain settings. The condition of
Theorem 3.9 holds for d = k/3 if and only if

0 ≤ α <
1
2

and
1
2

(
1−

√
1− 2α + 2α2

)
< εE ≤

1
2

.

Therefore, if the error probabilities satisfy these two inequalities, then Alice
and Bob can extract good bits from all buckets Bd with d ≤ D = k/3, for all
k. We thus have the following corollary.

Corollary 3.10 Fix k > 2. Let εA = εB = α < 1/2 and εE be such that

εE >
1
2

(
1−

√
1− 2α + 2α2

)
.

Then there exist large enough (`1, . . . , `bk/3c) such that the modified parity-check
protocol with block-length k, error bound D = k/3, and (`0, `1, . . . , `bk/3c) rounds
is a strict improvement (in terms of secret-key rate) on the parity-check protocol
with block-length k and `0 rounds.

Note that there exist pairs (α, εE) satisfying the conditions of Corollary 3.10
such that εE < α. Figure 3.2 showcases the region of interest for Corol-
lary 3.10, i.e. the set of pairs satisfying the conditions of the condition of
the corollary and also εE < α. Recall that Figure 3.1 of Section 3.4 show-

0.1 0.2 0.3 0.4 0.5
α

0.1

0.2

0.3

0.4

0.5

Eve's error

α

1

2
1 - 1 - 2α + 2α2 

Figure 3.2: Region where the condition of Corollary 3.10 is satisfied by pairs (α, εE) with
εE < α. Ideally, one would like to cover the whole region below the blue line (and also cases
where εA 6= εB).

cases a choice (α, εE) = (0.1, 0.065) where the parity-check protocol with
block-length 2 is not optimal (since block-length 3 performs better). Setting
α = 0.1, it follows by Corollary 3.10 that the modified parity-check protocol
with error bound D = k/3 works for εE > 0.048, whenever the number of
rounds is large enough. Then, if we run the modified parity-check proto-
col with any block-length k > 2, we can extract good bits from the 1-error
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bucket B1, and so we obtain a larger secret-key rate than by simply run-
ning the original parity-check protocol with any block-length and number
of rounds.

Corollary 3.11 There exist choices of α and εE for which the original parity-check
protocol does not yield the optimal secret-key rate for any block-length and number
of rounds.

The statement of Theorem 3.9 has deeper consequences than Corollaries 3.10
and 3.11. Given a block-length k and error probabilities α, εE, it provides an
easy way of checking what is the largest error bound D we can select that
ensures we can extract good bits from all buckets Bd for d ≤ D, provided
we choose a large enough number of rounds for each d. If we choose a
pair outside the region displayed in Figure 3.2, then it no longer holds that
we can provably use buckets Bd for d ≤ D = k/3. Nevertheless, not all is
lost: We can still successfully run the modified parity-check protocol if we
decrease the error bound D. It is interesting to consider which pairs (α, εE)
allow us to run the modified parity-check protocol with block-length k and
buckets Bd for d ≤ D = c · k, for some c < 1/2. Obtaining a lower for εE
as a function of α and D, as we did for D = k/3, seems to not be viable in
general. One can instead opt to fix α and investigate how the lower bound
on εE varies with D as we decrease c, with the help of a computer algebra
system. Table 3.2 showcases the behavior of the lower bound on εE when
α = 0.25, as a function of D = c · k. As expected, the lower bound on εE
decreases as D becomes smaller in relation to k.

D lower bound on εE
9k/20 0.2427
2k/5 0.1642
k/3 0.1047
k/4 0.0607
k/5 0.0427

k/10 0.0172
k/15 0.0108

Table 3.2: Lower bounds on εE as a function of the error bound D which guarantee that we can
successfully run the modified parity-check protocol with error bound D and α = 0.25, obtained
through the condition of Theorem 3.9.

Note that we can fix D > k/3 if we accept that both error probabilities will
need to be larger, and that the gap between thems will need to be smaller
for the modified parity-check protocol to work for larger D. As an example,
consider D = 9k/20. Figure 3.3 showcases the relationship required between
α and εE in order to ensure the modified parity-check protocol is successful
for this value of D. It is interesting to note that the current condition does
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not guarantee success in this case when α is too small (smaller than 0.2, for
example), if we require εE < α.

0.1 0.2 0.3 0.4 0.5
α

0.1

0.2

0.3

0.4

0.5

Eve's error

α

lower bound Eve's error

Figure 3.3: Region where the condition of Theorem 3.9 is satisfied by pairs (α, εE) with εE < α
and D = 9k/20. Ideally, one would like to cover the whole region below the blue line (and also
cases where εA 6= εB).

In order to obtain a strict improvement on the original parity-check protocol
with block-length k, it is enough that the condition of Theorem 3.9 is satisfied
for d = 1, i.e. it is enough that

(2
√

α00α01)
1−1/k(1− ε)−1/k > ε1−2/k.

The following lemma, proved by Maurer and Wolf [25], will be helpful.

Lemma 3.12 ([25, part of Lemma 3]) Let εA = εB = α < 1/2 and εE > 0.
Then

2
√

α00α01 > ε = 2α(1− α).

Proof It suffices to show that

α00α01 > α2(1− α)2. (3.17)

Note that equality holds in 3.17 when εE = 0, and that α00α01 is strictly
increasing as a function of εE, for fixed α. �

Let δ := 2
√

α00α01
ε . We have δ > 1 due to Lemma 3.12. Then, the condition of

Theorem 3.9 is satisfied for d = 1 if and only if

δ1−1/k >

(
1− ε

ε

)1/k

. (3.18)

If k → ∞, we have that the left-hand side of Inequality 3.18 converges to δ,
while the right-hand side converges to 1. Therefore, we have the following
corollary.
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Corollary 3.13 For any pair (α, εE) with α < 1/2 and εE > 0, the modified parity-
check protocol with block-length k and error bound D = 1 is a strict improvement
on the original parity-check protocol with block-length k for large enough k.

The proof of Theorem 3.9 is similar in spirit to the proof of Theorem 3.3. The
idea will be to upper bound Bob’s error probability and lower bound Eve’s
optimal error probability so that we get an exponential separation between
the two terms. We can then apply Lemma 3.4 to obtain the desired result.

Fix some d satisfying 0 ≤ d < k/2. Suppose, without loss of generality, that,
after running the modified parity-check protocol, Alice has a final bit X̂1
such that path(X̂1) = d0`d−1, which depends on X1, . . . , XLd , for Ld := k`d .
Thus, X̂1 = X1. Let Ŷ1 be Bob’s prediction about X̂1. Eve’s total information
about X̂1, which we call Ẑ1, consists of

Ẑ1 = (ZLd , X1 ⊕ XLd , path(X̂1)).

The following lemma states, analogously to Lemma 3.2 and Lemma 3.6, that
Eve can compute X1⊕XLd ⊕ZLd , and then discard ZLd and X1⊕XLd without
losing any information about X̂1. Its proof follows the same steps as the
proof of Lemma 3.2.

Lemma 3.14 We have

H(X1|ZLd , X1 ⊕ XLd , path(X1)) = H(X1|X1 ⊕ XLd ⊕ ZLd , path(X1)).

Suppose X̂1 = Ŷ1. Note that X̂1 was obtained by running the parity-check
protocol on bits Xki+1, for i = 0, . . . , Ld/k − 1, which were all put into
Bd, since path(X̂1) = d0`d−1. Let Ŷ1,ki+1 be Bob’s prediction of Xki+1 after
Step 5 of the modified parity-check protocol. By Lemma 3.5, it follows that
Ŷ1,ki+1 = Xki+1 for all i, i.e. all of Bob’s predictions are correct. This happens
if and only if every consecutive block of k bits of XLd ⊕YLd has weight d. An
analogous reasoning when X̂1 6= Ŷ1 shows that this happens if and only if
every consecutive block of k bits of XLd ⊕ YLd has weight k − d. Therefore,
we have the following lemma.

Lemma 3.15 Suppose Alice and Bob run the modified parity-check protocol with
block-length k and `d rounds on XLd , and obtain X̂1 = X1 with path(X̂1) = d0`d−1.
Then either every consecutive block of k bits of XLd ⊕ YLd has weight d if X̂1 = Ŷ1,
or every consecutive block of k bits of XLd ⊕YLd has weight k− d if X̂1 6= Ŷ1.

Lemma 3.15 allows us to determine Bob’s error probability on X̂1 easily,
which we do in the next lemma.

Lemma 3.16 Suppose X̂1 is such that path(X̂1) = d0`d−1, and let ε := Pr[X 6=
Y]. Then

βd := Pr[X̂1 6= Ŷ1|path(X̂1) = d0`d−1] =
εLd(1−2d/k)

εLd(1−2d/k) + (1− ε)Ld(1−2d/k)
.
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Proof Let Ed be the event that every consecutive block of k bits of XLd ⊕YLd

has weight d, and let Ek−d be the event that every consecutive block of k bits
of XLd ⊕YLd has weight k− d. Then

Pr[Ed] =

((
k
d

)
εd(1− ε)k−d

)Ld/k

, (3.19)

and

Pr[Ek−d] =

((
k
d

)
εk−d(1− ε)d

)Ld/k

. (3.20)

Furthermore, we know that

βd := Pr[X̂1 6= Ŷ1|path(X̂1) = d0`d−1] =
Pr[Ek−d]

Pr[Ed] + Pr[Ek−d]
. (3.21)

Plugging in Equation 3.19 and Equation 3.20 into Equation 3.21 and then
simplifying yields the desired result. �

We require some notation and a lemma, which will turn out to be useful
when we try to lower bound Eve’s optimal guessing probability. Recall, from
Section 3.2, that αrs denotes the probability that X ⊕ Y = r and X ⊕ Z = s,
for r, s ∈ {0, 1}. Suppose that εA = εB = α < 1/2. Then

α00 = α2εE + (1− α)2(1− εE),

α01 = α2(1− εE) + (1− α)2εE.

It will be of our interest to have a decent lower bound on (N
k ) when k is very

close to N/2 and N is large enough. This can be accomplished via sharp
asymptotic estimates on binomial coefficients, stemming from Sterling’s ap-
proximation.

Lemma 3.17 (First inequality proved in [25, Lemma 3]) For sufficiently large
even N, (

N
N/2

)
≥ 2N
√

2πN
,

and, for sufficiently large odd N,(
N

N+1
2

)
≥ 2N
√

2πN
.

Proof Both bounds can be obtained as corollaries of the fact that, for k a
constant independent of N,(

N
k

)
∼ 2Ne−d2/(2N)

√
πN/2

,

where d := N − 2k, which can be found in [40, Expression 5.41]. �
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We can now proceed to the proof of Theorem 3.9.

Proof (Theorem 3.9) Fix k > 2, d such that 0 < d < k/2, ` > 0, εA =
εB = α < 1/2, and εE > 0. Furthermore, define ε := Pr[X 6= Y], and
L := k`d . Suppose Alice and Bob run the modified parity-check protocol and
at the end Alice holds X̂1 with path(X̂1) = d0`−1. Without loss of generality,
suppose X̂1 depends solely on X1 . . . , XLd , and so, in particular, X̂1 = X1.

By Lemma 3.16, Bob’s error probability about X1 at the end of the protocol,
βL, satisfies

βL =
εL(1−2d/k)

εL(1−2d/k) + (1− ε)L(1−2d/k)
≤
(

ε

1− ε

)L(1−2d/k)

. (3.22)

Let γL be Eve’s optimal average error probability about X1 at the end of
the protocol, conditioned on path(X1) = d0`d−1. By Lemma 3.14, we can
assume Eve’s optimal guess is computed from X1 ⊕ XL ⊕ ZL and the fact
that path(X1) = d0`d−1. Note that if d = 0, then Eve’s optimal guessing
strategy for X1 is to take the majority of X1 ⊕ XL ⊕ ZL. This is the main
observation towards lower bounding Eve’s average error probability in the
proof of Theorem 3.3 in [25]. Unfortunately, the same does not hold for
d > 0, since, conditioned on path(X1) = d0`d−1, there are entries i and j
such that Xi = Yi and Xj 6= Yj simultaneously in each consecutive block of
k bits. Thus, Eve’s optimal guess may also depend on how the weight of
X1 ⊕ XL ⊕ ZL is spread over the L entries.

We will now find a lower bound for γL. Note that, since εA = εB = α, it
follows that

Pr[X 6= Z|X 6= Y] =
α11

2α(1− α)
=

1
2

. (3.23)

Let I := {i : Xi = Yi}. Consider the alternative experiment where Eve,
besides having access to X1 ⊕ XL ⊕ ZL and path(X1) = d0`−1 to guess X1,
also has access to I . Let γ′L denote the optimal average error probability for
Eve in this case. It follows immediately that γL ≥ γ′L, since Eve could just
choose to ignore I .

We analyze Eve’s error probability in this alternative case. Note that now
Eve knows which entries i of X1 ⊕ XL ⊕ ZL are such that Xi 6= Yi. By
Equation 3.23, it follows that Eve can simply discard such entries, and
thus keep only entries i ∈ I , since X ⊕ Z is uniform when conditioned
on X 6= Y. Let W := (XL ⊕ ZL)I , i.e. W is equal to XL ⊕ ZL restricted to
entries in I . Since all the bits of W are independent and identically dis-
tributed, we have that, similarly to the previous sections, the optimal strat-
egy for Eve (in terms of average error probability) is to take the majority of
(X1 ⊕ XL ⊕ ZL)I = X1 ⊕W as the guess for X1, because it coincides with
the maximum likelihood estimate of X1.
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Recall that, by Lemma 3.15, X1 = Ŷ1 holds if and only if every consecu-
tive block of k bits of XL ⊕ YL has weight d. Therefore, I has cardinality
L(1− d/k) in this case. Fix d such that L(1− d/k) is even and let A be the
event that W has weight exactly L(1−d/k)

2 . By the previous observations, if
A happens, then Eve has no information about X1, since any possible out-
come of X1 ⊕ XL ⊕ ZL, conditioned on A and path(X1) = d0`−1, is equally
likely whether X1 = 0 or X1 = 1. Therefore, Eve’s optimal average error
probability in the original setting satisfies

γL ≥ γ′L ≥
1
2

Pr[A|path(X1) = d0`d−1].

It suffices now to find a suitable lower bound for Pr[A|path(X1) = d0`d−1].
Consider the following set G, defined as

G := {u ∈ {0, 1}L : u has weight d in every consecutive block of k bits}.

By a simple counting argument, we have that

|G| =
(

k
d

)L/k

. (3.24)

Furthermore, for every u ∈ G it holds that

Pr[A, XL ⊕YL = u] =
(

L(1− d/k)
L(1− d/k)/2

)√
α00α01

L(1−d/k)
εdL/k.

Therefore,

Pr[A|path(X1) = d0`−1] = ∑
u∈G

Pr[A, XL ⊕YL = u]
Pr[path(X1) = d0`−1]

=
|G|( L(1−d/k)

L(1−d/k)/2)
√

α00α01
L(1−d/k)εdL/k

Pr[path(X1) = d0`−1]
. (3.25)

In order to simplify the expression in Equation 3.25, note that

Pr[path(X1) = d0`−1] =

((
k
d

)
εd(1− ε)k−d

)L/k

+

((
k
d

)
εk−d(1− ε)d

)L/k

,

(3.26)
and that, by Lemma 3.17, for large enough L,(

L(1− d/k)
L(1− d/k)/2

)
≥ 2L(1−d/k)√

2πL(1− d/k)
. (3.27)
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Combining 3.24, 3.26, and 3.27, we obtain

Pr[A|path(X1) = d0`−1] ≥

≥ 1√
2πL(1− d/k)

(2
√

α00α01)
L(1−d/k)εdL/k

εdL/k(1− ε)L(1−d/k) + εL(1−d/k)(1− ε)dL/k
. (3.28)

Our goal now is to obtain a denominator as in the right hand side of Inequal-
ity 3.22. Note that

εdL/k(1− ε)L(1−d/k) + εL(1−d/k)(1− ε)dL/k =

= (ε(1− ε))dL/k((1− ε)L(1−2d/k) + εL(1−2d/k)) ≤
≤ 2(ε(1− ε))dL/k(1− ε)L(1−2d/k),

since ε ≤ 1− ε. Therefore, it follows that

(2
√

α00α01)
L(1−d/k)εdL/k

εdL/k(1− ε)L(1−d/k) + εL(1−d/k)(1− ε)dL/k
≥

(2
√

α00α01)
L(1−d/k)(1− ε)−dL/k

2(1− ε)L(1−2d/k)
.

We then have

Pr[A|path(X1) = d0`−1] ≥ C(L)
(2
√

α00α01)
L(1−d/k) (1− ε)−dL/k

(1− ε)L(1−2d/k)
, (3.29)

for C(L) = O(1/
√

L). By hypothesis, the pair (α, εE) satisfies the condition

(2
√

α00α01)
L(1−d/k) (1− ε)−dL/k > εL(1−2d/k). (3.30)

We can then set
b :=

ε

1− ε
,

and

σ :=
(2
√

α00α01)
(1−d/k)/(1−2d/k) (1− ε)−d/(k−2d)

1− ε
,

which is obtained by raising the left hand side of 3.30 to the power of
1

L(1−2d/k) and dividing it by 1− ε. This immediately yields

σ >
ε

1− ε
= b,

as α and εE satisfy condition 3.30 (recall also that d < k/2). Then

γL ≥ C(L) · σL(1−2d/k) ≥ (σ− δ(L))L(1−2d/k),

since C(L) = O(1/
√

L), for some function δ(·) such that δ(L)→ 0 as L→ ∞.
Since σ > b, we can find L∗ large enough such that σ− δ(L∗) > b, and thus
we can set

c := σ− δ(L∗).

54



3.5. Modifying the parity-check protocol

Therefore, for L large enough, we have

γL ≥ cL(1−2d/k) > bL(1−2d/k) ≥ βL,

and so we can apply Lemma 3.4 to obtain the desired result.

Recall that the previous reasoning works only for d > 0 such that L(1− d/k)
is even. For d > 0 such that L(1− d/k) is odd, the proof is in the same spirit
of the extension of Theorem 3.3 to large odd N. It suffices to consider the
event that W has weight exactly L(1−d/k)+1

2 and follow a reasoning analo-
gous to the case where L(1− d/k) is even above, making use of the second
inequality in Lemma 3.17. �

Note that one can recover the argument used by Maurer and Wolf [25] to
prove Theorem 3.3 by setting d = 0 in the proof of Theorem 3.9 above and
invoking Lemma 3.12. It is interesting that this argument extends to d > 0
in a relatively natural way.

It is plausible that the condition of Theorem 3.9 can be considerably relaxed
in order to allow a much larger selection of error probabilities and error
bounds. Furthermore, it should also be possible to keep dividing the se-
lected bits into buckets depending on the number of errors reported by Bob
in further rounds (possibly indefinitely), instead of restricting the buckets to
the first round of the protocol and then applying the original parity-check
protocol, as it stands. The main obstacle towards this extension lies in the
fact that it is not clear how to find an exponential separation between Eve’s
and Bob’s error probability in those cases. A possible way to overcome this
barrier is to consider the fact that, as already remarked in Section 3.2, a suit-
able superlinear separation between Eve’s and Bob’s error probabilities is
enough.

We remark that Liu et al. [20] presented an alternative protocol for advan-
tage distillation, which might also improve on the parity-check protocol.
Nevertheless, they do not prove that such an improvement holds, as bound-
ing Eve’s optimal error probability in their case seems hopeless. The claim
stems from simulations where Eve uses a not necessarily optimal strategy
for decoding. Furthermore, their protocol uses large quantities of local ran-
domness. In contrast, the protocol we presented in this section uses no local
randomness, is as conceptually simple as the parity-check protocol, yields a
provable improvement, and is easily generalizable.

We believe the main message of our work in this section is that the ideas
behind the parity-check protocol can still be exploited in a deeper way to
yield a better understanding of the secret-key rate in the satellite setting.

In Section 3.6 we investigate a practical translation of the satellite setting.
We study the secret-key rate when the satellite is allowed to choose the er-
ror probabilities according to some channel quality ratio constraint between
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Alice and Eve. In particular, we will be interested in determining the asymp-
totic behavior of this alternative notion of secret-key rate.

3.6 The secret-key rate per time unit under a channel
quality constraint

In the previous sections, we studied the quantity of secret-key bits Alice
and Bob can obtain per number of realizations of X, Y, and Z in the satel-
lite setting. While the results surveyed are fundamental to understanding
the secret-key rate, it is also the case that the model considered does not
perfectly capture a real-world satellite setting.

In fact, suppose Alice, Bob, and Eve each possess an antenna listening in
to broadcasts from a satellite. Furthermore, suppose Alice and Bob have
antennae of the same type. The satellite broadcasts a random bit over a
time period of its choice: the larger the time period, the smaller the error
probabilities at the receiving ends of the broadcast. Thus, we may think
of the satellite as choosing Alice and Bob’s error probability α, and Eve’s
error probability γ, or, equivalently, as choosing the capacities of the binary
symmetric channels to Alice and Bob, and to Eve. There exists, though, a
relationship between these capacities. One may assume that Eve’s antenna
is more powerful than Alice’s and Bob’s (e.g. it may have a larger surface
area). This is modelled by requiring the existence of a fixed D ≥ 1 such that
Eve’s capacity is always D times larger than Alice’s and Bob’s capacities, i.e.
the satellite is only allowed to choose pairs (α, γ) ∈ [0, 1/2]2 such that

1− h(γ)
1− h(α)

= D.

Additionally, there is a tradeoff between the time period allocated to trans-
mit a single bit and how many bits the satellite can transmit per some fixed
time unit. In fact, if the time period for transmitting a bit shortens, then
the satellite can transmit more bits in a given time period than originally
possible, although the channels to Alice, Bob, and Eve now have smaller
capacities. Therefore, it makes sense in practice to analyze the secret-key
per time unit. If the satellite transmits two bits per time unit, then the num-
ber of secret-key bits extracted per time unit is double whatever number of
secret-key bits we extract per number of realizations, but, as we mentioned
before, the quality of each bit is worse than if we only transmit one bit per
time unit. As a natural approximation, we assume there is an inverse linear
relationship between the number of bits transmitted per time unit and Al-
ice’s capacity 1− h(α). We can now define our quantity of interest. We will
interested in studying its asymptotic behavior as a function of the capacity
ratio constraint D.
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Definition 3.18 For D ≥ 1, the secret-key rate per time-unit under a channel
quality constraint D, denoted by S∗(D), is defined as

S∗(D) := sup
α,γ: 1−h(γ)

1−h(α)=D

S(α; γ)

1− h(α)
,

where S(α; γ) denotes the secret-key rate per number of realizations in the satellite
setting when Alice and Bob have error probability α, and Eve has error probability
γ.

Note that we do not know how to compute S(α; γ) in general. Therefore,
in order to get worst-case guarantees for the behavior of S∗(D), we replace
S(α; γ) by the rate of some advantage distillation protocol. A first choice
would be the repeater-code protocol of Section 3.2. The rate achieved by this
protocol is exponentially small, and so we instead opt for the parity-check
protocol of Section 3.3.

Recall that the parity-check protocol with block-length 2 achieves a rate (per
number of realizations) of

R(`, α, γ) := 2−`
`−1

∏
i=0

[β2
i + (1− βi)

2](IB − IE),

where
IB = 1− h(β`),

and

IE = 1−
L

∑
w=0

(
L
w

)
pw

εL + (1− ε)L · h
(

pw

pw + pL−w

)
.

In these expressions, α is Alice’s and Bob’s error probability, γ is Eve’s error
probability, ` is the number of rounds, L = 2`, ε = 2α(1− α) is the initial
error probability between Alice’s and Bob’s bits,

βi =
ε2i

ε2i + (1− ε)2i

is the error probability between Alice’s and Bob’s bits after i rounds, and

pw = αL−w
00 αw

01 + αL−w
10 αw

11

is the probability that XL ⊕ ZL is a particular codeword of weight w, and
either XL ⊕YL = 0L or XL ⊕YL = 1L, where αrs = Pr[X⊕Y = r, X⊕ Z = s]
satisfy

α00 = α2γ + (1− α)2(1− γ)

α01 = α2(1− γ) + (1− α)2γ

α10 = α(1− α)

α11 = α(1− α).
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We will focus on the worst-case behavior of the quantity

R∗(D) := sup
`,α,γ: 1−h(γ)

1−h(α)=D

R(`, α, γ)

1− h(α)
.

Clearly, S∗(D) ≥ R∗(D). It is easy to see that R∗(D) is a decreasing function
of D. Indeed, fix D < D′. For each choice (α′, γ′) for R∗(D′), we can obtain a
choice (α, γ) for R∗(D) by setting α = α′ and γ > γ′. It follows immediately
that running the parity-check protocol with the same parameters for the new
choices (α, γ) yields a larger secret-key rate, and so R∗(D) ≥ R∗(D′).

We show that, in our practical setting, the parity-check protocol already
yields a good secret-key rate per time unit, in the sense that this protocol
guarantees that R∗(D) (and thus S∗(D)) decreases very mildly with D. In
fact, we have the following theorem.

Theorem 3.19 There exists a constant c > 0 such that

R∗(D) ≥ c
D

holds for all D ≥ 1.

Before we prove Theorem 3.19, we need some additional definitions and
lemmas. Let p′w be the probability that XL ⊕ ZL is a particular codeword of
weight w and that XL = YL. Then, in our case

p′w = αL−w
00 αw

01,

and
pw = (α(1− α))L + p′w ≥ p′w.

Lemma 3.20 We have

h
(

pw

pw + pL−w

)
≥ h

(
p′w

p′w + p′L−w

)
for all L and w.

Proof This lemma is a consequence of the fact that, for a, b, x > 0,

a + x
a + b + 2x

≤ a
a + b

holds if and only if a ≥ b.

Fix w ≤ L/2. Then
pw

pw + pL−w
≥ 1

2
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since pw ≥ pL−w. Furthermore, it holds that

p′w
p′w + p′L−w

≥ (α(1− α))L + p′w
2(α(1− α))L + p′w + p′L−w

=
pw

pw + pL−w
≥ 1

2
,

On the other hand, if w > L/2, then pw < pL−w holds, and so

p′w
p′w + p′L−w

<
pw

pw + pL−w
< 1/2.

This implies the desired result. �

Lemma 3.21 Suppose w = L(1/2− δ) for some δ > 0. Then

p′L−w

p′w
=

(
α01

α00

)2δL

.

Proof It suffices to note that

p′L−w

p′w
=

αw
00αL−w

01

αL−w
00 αw

01

=

(
α01

α00

)L−2w

,

and that L− 2w = L− 2L(1/2− δ) = 2δL. �

Lemma 3.22 ([4, Theorem 2.2]) If p = 1/2− δ, we have

2δ2

ln(2)
≤ 1− h(p) ≤ 4δ2.

We can now proceed to the proof of Theorem 3.19.

Proof (Theorem 3.19) The idea of the proof is as follows: We define a se-
quence of triples (`n, αn, γn) and lower-bound its asymptotic parity-check
rate R(`n, αn, γn). We show that

R(`n, αn, γn) ≥
c1

n4

for all n, for some positive constant c1 > 0. The sequence itself is also chosen
such that both (1− h(γn))/(1− h(αn)) and 1− h(αn) grow like n2, which
implies the desired result.

For each n we fix αn = 1/2− 1/n, `n = 2 log(n), and γn = 0.4 for all n. We
run the parity-check protocol with block-length 2 using these parameters.

From now on we drop all subscripts for simplicity. First, note that 2−` =
1/n2. Second, we have

`−1

∏
i=0

[β2
i + (1− βi)

2] ≥
`−1

∏
i=0

1
2
=

1
n2 ,
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since p2 + (1− p)2 ≥ 1/2 holds for all p ∈ [0, 1]. Therefore,

R∗
(

1− h(γ)
1− h(α)

)
≥ 1

(1− h(α))n4

[
n2

∑
w=0

(
n2

w

)
pw

εn2 + (1− ε)n2 · h
(

pw

pw + pn2−w

)
− h (βn2)

]
,

where

βn2 =
εn2

εn2 + (1− ε)n2 .

It also holds that

lim
n→∞

h (βn2) = h
(

lim
n→∞

1
1 + (1 + 8/n2)n2

)
= h

(
1

1 + e8

)
< 0.0044. (3.31)

Our goal now is to obtain a lower bound for the weight-sum in the expres-
sion of R∗(D) for large enough n that is strictly larger than the upper bound
in Inequality 3.31. We have

n2

∑
w=0

(
n2

w

)
pw

εn2 + (1− ε)n2 · h
(

pw

pw + pn2−w

)
≥

≥
n2(1/2+2/n)

∑
w=n2(1/2−2/n)

pw

εn2 + (1− ε)n2 · h
(

pw

pw + pn2−w

)
≥

≥ 1
2

n2(1/2+2/n)

∑
w=n2(1/2−2/n)

(
n2

w

)
pw

(1− ε)n2 · h
(

pw

pw + pn2−w

)
≥

≥ 1
2

n2(1/2+2/n)

∑
w=n2(1/2−2/n)

(
n2

w

)
p′w

(1− ε)n2 · h
(

pw

pw + pn2−w

)
≥

≥ 1
2

n2(1/2+2/n)

∑
w=n2(1/2−2/n)

(
n2

w

)
p′w

(1− ε)n2 · h
(

p′w
p′w + p′n2−w

)
≥

≥ 1
2

n2(1/2+2/n)

∑
w=n2(1/2−2/n)

(
n2

w

)
p′w

(1− ε)n2 · h

 1

1 +
(

α01
α00

)4n

 (3.32)

for large enough n, where the first inequality holds for n ≥ 5 since all terms
in the sum are positive, the second inequality holds because

εn2
+ (1− ε)n2 ≤ 2(1− ε)n2

is true for large enough n, the third inequality follows because p′w < pw, the
fourth inequality follows from Lemma 3.20, and the fifth inequality follows
from Lemma 3.21 with L = n2 and δ = 2/n, and from the fact that

h
(

p′w
p′w + p′L−w

)
≤ h

(
p′w+1

p′w+1 + p′L−w−1

)
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for all w < L/2. Furthermore, it holds that

lim
n→∞

h

 1

1 +
(

α01
α00

)4n

 = h
(

1
1 + e−32/5

)
> 0.0177, (3.33)

since

lim
n→∞

(
α01

α00

)4n

= lim
n→∞

(
1− 8

5n

)4n

= e−32/5.

Let W := (w(Xn2 ⊕ Zn2
)|Xn2

= Yn2
). Then

n2(1/2+2/n)

∑
w=n2(1/2−2/n)

(
n2

w

)
p′w

(1− ε)n2 = Pr[|W − n2/2| ≤ 2n]. (3.34)

It suffices now to find a suitable lower bound for Pr[|W − n2/2| ≤ 2n]. In
order to do that, we will apply Chebyshev’s inequality. First, note that

E[W] = n2 · α01

α00 + α01
= n2 · α2(1− γ) + (1− α)2γ

α2 + (1− α)2 ≤ n2

2
.

Second, algebraic manipulation yields

n2/2− E[W]

n
=

1
2.5 + 10/n2 ≤

2
5

,

which implies that
n2/2− 2n/5 ≤ E[W] ≤ n2/2

for all n. Thus, we have

n2(1/2− 2/n) = n2/2− 2n ≤ E[W]− n,

and
n2(1/2 + 2/n) = n2/2 + 2n ≥ E[W] + n.

Therefore,

Pr[|W − n2/2| ≤ 2n] ≥ Pr[|W − E[W]| ≤ n] ≥ 1− Var[W]

n2 ≥ 3
4

, (3.35)

where the second inequality follows from Chebyshev’s inequality, and the
third inequality follows from the fact that

Var[W] = n2 · Pr[X 6= Z|X = Y](1− Pr[X 6= Z|X = Y]) ≤ n2

4
.

Combining 3.32, 3.33, 3.34, and 3.35 yields

n2

∑
w=0

(
n2

w

)
pw

εn2 + (1− ε)n2 · h
(

pw

pw + pn2−w

)
>

1
2
· 3

4
· 0.0177 > 0.0044
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for large enough n.

Finally, Lemma 3.22 yields

1− h(γ)
1− h(α)

>
n2

200
,

and
1− h(α) < 200(1− h(2/5))/n2 < 6/n2

for large enough n. Therefore, we have the inequality

R∗
(

n2

200

)
≥ R∗

(
1− h(γ)
1− h(α)

)
≥ c1

n2 (3.36)

for some constant c1 > 0 and n = 2j for some integer j, since R∗(·) is a
decreasing function. It follows that we can rewrite Inequality 3.36 as

R∗(D) ≥ c2

D

for c2 = c1/200 > 0 and D = 4j/200 for some integer j. This inequality can
be extended to all values of D by noting that, for each D ∈ [1, ∞), there is
an integer j such that

D ≤ 4j

200
≤ 6D.

In fact, if j is such that D ≤ 4j ≤ 4D, which we know exists, then

D ≤ 4j+4

200
=

256 · 4j

200
≤ 6D.

Thus,
R∗(D) ≥ R∗(4j+4/200) ≥ c2

6D
=

c3

D
for large enough D, where c3 = c2/6 > 0 is a positive constant independent
of D, which yields the desired result. �

It is also possible to show that we cannot do better than S∗(D) ≥ c/D for
some positive constant c > 0. In fact, the following lemma holds.

Theorem 3.23 We have

S∗(D) ≤ 4 ln(2)2

D
for all D.

Proof Fix some D and α, γ ∈ [0, 1/2] satisfying 1−h(γ)
1−h(α) = D. Note that

S(α; γ)

1− h(α)
≤ I(X; Y)

1− h(α)
=

1− h(ε)
1− h(α)

,
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where the first inequality follows from Lemma 2.15, and ε = 2α(1− α). We
claim that

1− h(ε)
1− h(α)

≤ 4 ln(2)2

D
.

Let δ := 1/2 − α. Then, by Lemma 3.22, we have 1 − h(α) ≥ 2δ2/ ln(2).
Furthermore, since ε = 2α(1− α) = 1/2− 2δ2, it follows that 1− h(ε) ≤ 16δ4.
Therefore,

1− h(ε)
1− h(α)

≤ 8 ln(2)δ2.

It remains to bound δ2 by a function of D. Note that

2δ2

ln(2)
≤ 1− h(α) =

1− h(γ)
D

≤ 1
D

.

It follows that δ2 ≤ ln(2)/(2D), and so

1− h(ε)
1− h(α)

≤ 4 ln(2)2

D

holds, as desired. Since the choice of α and γ was arbitrary, we have

S∗(D) ≤ 4 ln(2)2

D

for all D. �

Theorems 3.19 and 3.23 establish the correct asymptotic behavior of S∗(D),
as showcased in the following corollary.

Corollary 3.24 We have S∗(D) = Θ(1/D).

As mentioned before, the proofs of Theorems 3.19 and 3.23 also yield a proof
for a conjecture of Gander and Maurer [11], stated in the following theorem.

Theorem 3.25 We have

sup
`,α,γ: 1−h(γ)

1−h(α)=D

R(`, α, γ) = Θ(1/D2)

and
sup

α,γ: 1−h(γ)
1−h(α)=D

S(α; γ) = Θ(1/D2).

In other words, the (unnormalized) secret-key rate decreases like 1/D2 with the
channel quality ratio D.
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We conclude by proposing an open question. Theorem 3.19 and Lemma 3.23
show that there exist constants c, c′ > 0 such that c/D ≤ R∗(D) ≤ c′/D for
all D ≥ 1. Our current techniques allow us to obtain c′ < 2 and c > 10−5 for
large enough D, and thus there exists a large gap between the constants in
the lower and upper bounds. Furthermore, it is not clear how to significantly
improve these bounds without using different techniques. A natural open
question arises: Is it possible to bridge the gap between c and c′ in the lower
and upper bounds for S∗(D)?
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Chapter 4

A general challenge – when is
secret-key agreement possible?

In this chapter, we address one of the most significant open problems in clas-
sical information-theoretic secret-key agreement: Deciding when the secret-
key rate is positive for general distributions. This leads to the fundamental
question of whether distributions with bound information exist. These dis-
tributions require secret bits to be created, but have zero secret-key rate, and
thus no secret bits can be extracted from them. Studying these questions
has given rise to a large body of work, and has uncovered interesting con-
nections with quantum information theory. It is widely believed that bound
information exists.

In Section 4.1, we introduce improved upper bounds for the secret-key rate.
In Section 4.2, we discuss the information of formation of a distribution,
which allows us to grasp the significance of bound information, and study
the existence of separations between the bounds of Section 4.1, which is a
possible strategy for establishing the existence of bound information. In
Section 4.3, we analyze a distribution which may have bound information,
and we provide some evidence that this is indeed the case. Finally, in Sec-
tion 4.4, we study notions of secret-key rate arising from restricting the types
of protocols allowed, and study separations between them.

4.1 Better upper bounds for the secret-key rate

In this section, we discuss known improved upper bounds on the secret-
key rate, along with their main properties, which will also be useful in the
following sections. Throughout this section, we will assume that H(XYZ) is
finite.

We start by introducing the intrinsic mutual information, an information-theoretic
quantity introduced by Maurer and Wolf [26] which, besides being a better
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4. A general challenge – when is secret-key agreement possible?

upper bound on the secret-key rate than the bound of Lemma 2.15, is also a
lower bound on the number of secret-key bits shared by Alice and Bob they
require to create a distribution like PXYZ through an authenticated channel,
which is called the information of formation [36], as we will see in Sec-
tion 4.2. This property gives the intrinsic mutual information a fundamental
character in information-theoretic secret-key agreement.

We present the idea Maurer and Wolf [26] used to derive the intrinsic mu-
tual information. For a given distribution PXYZ, Eve can use a strategy that
minimizes the upper bound I(X; Y|Z), instead of a strategy that attempts to
minimize the secret-key rate of Alice and Bob. While this is a worse idea for
Eve than minimizing the secret-key rate directly, it is a very good idea for
us, because, unlike for the secret-key rate, it should be easy to compute the
new conditional mutual information after Eve applies a simple strategy.

A possible simple strategy for Eve is to transform Z into a new discrete
random variable Z, and then discard Z. This can be thought of as Eve
sending Z through a channel defined by PZ|Z. We thus have that XY →
Z → Z holds. It follows that

S(X; Y||Z) ≤ S(X; Y||Z) ≤ I(X; Y|Z),

where the first inequality is true because we are restricting the set of possi-
ble strategies for Eve, and the second inequality follows from Lemma 2.15.
Since PZ|Z was an arbitrary channel, we can take the infimum over all such
channels, and so we obtain

S(X; Y||Z) ≤ inf
XY→Z→Z

I(X; Y|Z),

which gives rise to the following definition.

Definition 4.1 ([26, Definition 2]) The intrinsic mutual information of X and
Y given Z, denoted by I(X; Y ↓ Z), is defined as

I(X; Y ↓ Z) := inf
XY→Z→Z

I(X; Y|Z),

where the infimum is understood to be taken over all discrete random variables Z
such that XY → Z → Z holds.

The following lemma states that the intrinsic mutual information is a strictly
better upper bound on the secret-key rate than the conditional mutual infor-
mation.

Lemma 4.2 ([26, Theorem 2]) We have

S(X; Y||Z) ≤ I(X; Y ↓ Z) ≤ I(X; Y|Z),

and there exists a probability distribution for which

I(X; Y ↓ Z) < I(X; Y|Z).
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Computing the intrinsic mutual information seems hard at first sight, since
it involves an infimum. There exists a sequence (PZi |Z) of channels such that

I(X; Y|Zi)→ I(X; Y ↓ Z),

but it can happen that no channel PZ|Z satisfies I(X; Y|Z) = I(X; Y ↓ Z).
Then, in order to compute I(X; Y ↓ Z), we would need to find and ana-
lyze the sequence (PZi |Z). This may be very complex, since it is an infinite
sequence of random variables which can behave in a very arbitrary way.

The following lemma, which was proved by Christandl, Renner, and Wolf [5],
significantly simplifies the computation of the intrinsic mutual information
when Z is a finite random variable, by showing that there exists a channel
achieving the infimum in this case.

Lemma 4.3 ([5, Theorem 1]) Fix a probability distribution PXYZ where Z has fi-
nite range Z . Then, there exists a random variable Z such that XY → Z → Z
and

I(X; Y ↓ Z) = I(X; Y|Z).

Moreover, the range of Z, denoted by Z , satisfies |Z| ≤ |Z|.

In particular, Lemma 4.3 implies that, if one wishes to prove that I(X; Y ↓
Z) = 0, it suffices to look for a channel PZ|Z such that I(X; Y|Z) = 0, i.e.
such that X and Y are conditionally independent given Z. This observation
will be useful in the following sections.

In order to improve on this upper bound, we look into another property of
the secret-key rate. Suppose Alice, Bob, and Eve receive i.i.d. realizations
of X, Y, and Z, respectively. The main question is now the following: How
is the secret-key rate affected when Eve additionally receives some side in-
formation U such that XYZ → U holds? The following lemma, proved by
Renner and Wolf [36], states that the secret-key rate does not decrease by
more than the entropy of the side information.

Lemma 4.4 ([36, Theorem 3]) For any distribution PXYZ and discrete random
variable U,

S(X; Y||ZU) ≥ S(X; Y||Z)− H(U).

Lemma 4.4 also implies that computing an estimate of the decrease of the
secret-key rate after adding some side information U is easy, if U is a reason-
able random variable. Recall that we could easily compute the conditional
mutual information after Eve applied a simple strategy to Z, which was the
main motivation behind Definition 4.1. We can now combine both steps, as
done in [35, Section 1], by first giving Eve some side information U, and then
letting her run a simple strategy on ZU. In order to obtain another upper
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bound from these observations, we rearrange the inequality of Lemma 4.4
to get, for any discrete random variable U,

S(X; Y||Z) ≤ S(X; Y||ZU) + H(U) ≤ I(X; Y ↓ ZU) + H(U).

We then have the following definition.

Definition 4.5 ([35, Section 1]) The reduced intrinsic mutual information of
X and Y given Z, denoted by I(X; Y ↓↓ Z), is defined as

I(X; Y ↓↓ Z) := inf
XYZ→U

[I(X; Y ↓ ZU) + H(U)],

where the infimum is taken over all discrete random variables U such that XYZ →
U holds.

Note that we recover the intrinsic mutual information by setting U = ⊥
with probability 1, as expected from our previous intuition. The following
lemma implies that the reduced intrinsic mutual information is a strictly bet-
ter upper bound on the secret-key rate than the intrinsic mutual information.

Lemma 4.6 ([35, Theorems 1 and 3]) We have

S(X; Y||Z) ≤ I(X; Y ↓↓ Z) ≤ I(X; Y ↓ Z).

Moreover, there exists a probability distribution satisfying

I(X; Y ↓↓ Z) < I(X; Y ↓ Z).

The reduced intrinsic mutual information, unlike the intrinsic mutual in-
formation, satisfies a property analogous to the one of Lemma 4.4 for the
secret-key rate: For any random variable U,

I(X; Y ↓↓ ZU) ≥ I(X; Y ↓↓ Z)− H(U).

It is thus reasonable to ask whether

S(X; Y||Z) ?
= I(X; Y ↓↓ Z),

as was done in [36, Section 5]. More recently, Gohari and Anthanaram [13]
proved that there exists a probability distribution for which

S(X; Y||Z) < I(X; Y ↓↓ Z).

This is done by obtaining the following improved upper bound on the secret-
key rate for finite distributions,

GA(X; Y|Z) := inf
J
[I(X; Y|J) + I(XY; J|Z)],
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where the infimum is taken over all discrete random variables J, and finding
a distribution such that

GA(X; Y|Z) < I(X; Y ↓↓ Z).

This bound was obtained by trial and error, following a streamlined process
for deriving upper bounds on the secret-key rate described in [13, Section
IV A].

We will now see that GA(X; Y|Z) also satisfies a property akin to the one
of Lemma 4.3 for the intrinsic mutual information, and we use the results
developed in [5] to prove Lemma 4.3.

Lemma 4.7 Let X, Y, and Z be random variables with finite ranges X , Y , and
Z , respectively. Then, there exists a finite random variable J with range J ⊆
X ×Y ×Z such that

GA(X; Y|Z) = I(X; Y|J) + I(XY; J|Z).

Gohari and Anantharam [13] had already mentioned that such a result could
be obtained through measure-theoretic methods (without a proof). Before
we prove Lemma 4.7, we need the following lemma, which was proved by
Christandl, Renner, and Wolf [5].

Lemma 4.8 ([5, Lemma 6 with Zi = W for all i]) Let W be random variable
with finite range W , and let (Ji) be a sequence of discrete random variables. Fur-
thermore, fix a continuous function f : P(W) → R, where P(W) denotes the
space of all probability distributions over W . Then, there exists a random variable
J with range J ⊆ W such that

EJ [ f (PW|J(·, J))] ≤ lim
i→∞

EJi [ f (PW|Ji
(·, Ji))].

We can now proceed to the proof of Lemma 4.7.

Proof (Lemma 4.7) Fix random variables X, Y, and Z with finite ranges X ,
Y , and Z , respectively. Then, there exists a sequence (Ji) of discrete random
variables such that

I(X; Y|Ji) + I(XY; Ji|Z)→ GA(X; Y|Z).

Consider the following real-valued function, defined over the set of distribu-
tions on X ×Y ×Z ,

f (PX′Y′Z′) = H(X′) + H(X′|Y′)− H(X′Y′|Z′) + c,

where c = H(XY|Z) for X, Y, and Z as fixed above (c is a constant). Note
that PX′ , PY′ , PZ′ , PX′|Y′ , PX′Y′|Z′ can all be computed from PX′Y′Z′ , and so all
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the quantities in the expression for f can be computed from PX′Y′Z′ . Then,
we can instantiate PX′Y′Z′ = PXYZ|J(·, ·, ·, j) for some random variable J and
obtain

f (PXYZ|J(·, ·, ·, j)) = H(X|J = j)+ H(X|Y, J = j)−H(XY|Z, J = j)+ H(XY|Z).

It follows that

EJ [ f (PXYZ|J(·, ·, ·, J))] = I(X; Y|J) + I(XY; J|Z).

Furthermore, f is continuous. This can be seen as a corollary of Lemma 4.21,
which we will use in Section 4.2.

Applying Lemma 4.8 with W = XYZ as fixed at the start of the proof, it
follows that there is a random variable J with range J ⊆ X × Y × Z such
that

I(X; Y|J) + I(XY; J|Z) = EJ [ f (PXYZ|J)] ≤ lim
i→∞

EJi [ f (PXYZ|Ji
)] = GA(X; Y|Z),

which concludes the proof. �

Note that, unlike in the statement of Lemma 4.3, we require all of X, Y, and
Z to have finite range, instead of only Z. This is because XY, Z, and J do
not necessarily form a Markov chain. If XY → Z → J holds, as is the case
for the intrinsic mutual information, then we can represent I(X; Y|J = j) as
a continuous function of PZ|J(·, j), since

PXY|J(·, ·, j) = ∑
z

PZ|J(z, j)PXY|Z(·, ·, z).

Therefore, in order to apply Lemma 4.8 to the intrinsic mutual information,
we only require that the range of Z be finite.

The following lemma shows that GA(X; Y|Z) is in general at least as tight
as the reduced intrinsic mutual information.

Lemma 4.9 ([13, Corollary 2 and its proof]) For all finite probability distribu-
tions PXYZ, we have

S(X; Y||Z) ≤ GA(X; Y|Z) ≤ I(X; Y ↓↓ Z).

The upper bound GA(X; Y|Z) was obtained by Gohari and Anantharam as
a corollary of the following lemma, also proved in [13].

Lemma 4.10 ([13, Corollary 2]) Fix a finite probability distribution PXYZ. Then

S(X; Y||Z) ≤ inf
J
[S(X; Y||J) + Sow(XY; J||Z)],

where the infimum is taken over all finite random variables J.
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The inequality in Lemma 4.10 allows us to obtain more refined upper bounds.
By replacing S(X; Y||J) with the corresponding upper-bound I(X; Y|J), and
Sow(XY; J||Z) with the upper bound I(XY; J|Z), we recover GA(X; Y|Z) as
an upper bound on the secret-key rate.

We can also obtain even better upper bounds than GA(X; Y|Z) by using the
intrinsic or reduced intrinsic mutual informations instead of the conditional
mutual information in Lemma 4.10. In fact, we know a single-letter char-
acterization for Sow(XY; J||Z) (Lemma 2.17), albeit it is not very tractable
in general. We could even nest the bounds obtained, e.g. by replacing
S(X; Y||J) by GA(X; Y||J) and so on, giving rise to an infinite sequence of
potentially increasingly refined upper bounds on the secret-key rate. Un-
fortunately, bounds beyond GA(X; Y|Z) are generally intractable with our
current knowledge, and so we focus our discussion on GA(X; Y|Z) only.

Finally, we remark that Tyagi and Watanabe [41][42] showcase interesting
connections between the secret-key rate and binary hypothesis testing, which
allows them to obtain upper-bounds for the single-shot secret-key rate (where
the parties receive only one realization of their respective source), even when
the error probability and secrecy constraint are not asymptotically zero. Ap-
plying their techniques to the i.i.d. model we focus on, they recover known
upper bounds (namely I(X; Y ↓ Z) and GA(X; Y||Z)).

In the following section, we will connect these improved upper bounds to
some fundamental conjectures and concepts in classical information-theoretic
secret-key agreement.

4.2 The positivity conjecture and bound information

In this section, we first motivate and discuss two important conjectures in
information-theoretic secret-key agreement. Afterwards, we show connec-
tions between the most tractable upper bounds discussed in Section 4.1,
which imply that they are unlikely to help us settle these conjectures.

Throughout this section, we assume that H(XYZ) is finite.

As we have seen, computing the secret-key rate of a distribution seems to be
intractable in general. A more approachable, but still fundamental question
is as follows [26]:

Is there a simple, general characterization of the probability distributions PXYZ that
satisfy S(X; Y||Z) > 0?

Maurer and Wolf studied several settings for information-theoretic secret-
key agreement (see [25] [26] [44]), and, in most of those settings, were able
to prove that distributions with positive secret-key rate are exactly the ones
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with positive intrinsic mutual information. They put forth the following
conjecture, which we call the positivity conjecture.

Conjecture 4.11 (Positivity conjecture, [26, Conjecture 1]) For any probability
distribution PXYZ, we have S(X; Y||Z) > 0 if and only if I(X; Y ↓ Z) > 0.

If true, the positivity conjecture would yield an easy way of checking whether
a given distribution allows information-theoretic secret-key agreement, espe-
cially since verifying whether the intrinsic mutual information is positive is
relatively simple whenever Z is a finite random variable, due to Lemma 4.3.

Renner and Wolf [36] proved that the intrinsic mutual information, besides
being an upper bound on the secret-key rate, is also a lower bound on the
amount of secret bits necessary to create a distribution as secure for Alice
and Bob as the one under consideration, which is called the information of
formation of a distribution. We have the following definition.

Definition 4.12 ([36, Definition 5]) The information of formation of X and
Y given Z, denoted by Iform(X; Y|Z), is the infimum of all R ≥ 0 such that,
for all ε > 0, there exists an integer N0 such that, for all N ≥ N0, Alice and
Bob, sharing a string of dRNe secret bits, can run an interactive protocol with
public communication C after which they end up with random variables X′ and
Y′, respectively, such that there exists a channel PC|ZN for which (X′, Y′, C) is
distributed exactly like (XN , YN , C) with probability at least 1− ε.

Renner and Wolf [36] proved the following lemma.

Lemma 4.13 ([36, Theorem 5]) We have

I(X; Y ↓ Z) ≤ Iform(X; Y|Z).

Moreover, neither I(X; Y) nor I(X; Y|Z) are lower bounds on Iform(X; Y|Z).

In fact, we can go further: While the positivity conjecture is still open, it
holds that the intrinsic mutual information exactly characterizes the dis-
tributions PXYZ, where Z is a finite random variable, which have positive
information of formation.

Lemma 4.14 Fix a discrete probability distribution PXYZ such that Z is a finite
random variable. Then, Iform(X; Y|Z) = 0 if and only if I(X; Y ↓ Z) = 0.

Proof The key to the proof is the fact that I(X; Y ↓ Z) = 0 implies that
there exists a channel PZ|Z such that I(X; Y|Z) = 0, i.e. such that X and Y
are conditionally independent given Z, due to Lemma 4.3, since Z is a finite
random variable.

Fix an integer N. The following protocol works for R = 0 and for any ε > 0:

1. Alice samples ZN according to (PZ)
N , and then X′ according to (PX|Z)

N ;
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2. Alice sends ZN to Bob;

3. Bob samples Y′ according to (PY|Z)
N .

Note that the communication of the protocol is C = ZN . Then (X′, Y′, C)
is distributed according to (PZPX|ZPY|Z)

N . Since I(X; Y|Z) = 0, it follows
that PX|ZPY|Z = PXY|Z. Therefore, (X′, Y′, C) is distributed exactly like

(XN , YN , ZN
). �

This insight allows us to rewrite the positivity conjecture for distributions
with finite Z as follows.

Conjecture 4.15 (Positivity conjecture for finite Z, rewritten) Every distribu-
tion PXYZ with Z finite and such that Iform(X; Y|Z) > 0 also satisfies S(X; Y||Z) >
0.

In other words, if we restrict our attention to distributions with finite Z, the
positivity conjecture is equivalent to the statement that we can extract secret
bits from every distribution which requires secret bits to be constructed, i.e.
which cannot be constructed by Alice and Bob solely from local operations
and public discussion.

Gisin, Renner, and Wolf [12] gave some evidence that the positivity conjec-
ture is false by making a connection with an analogous concept in quan-
tum information theory, called bound entanglement. We give an informal
overview of their results, based on their exposition.

A quantum state is said to be bound entangled if it is entangled (informally,
if it cannot be prepared solely through local operations and classical com-
munication), and, additionally, it has zero entanglement distillation rate (see
Section 2.5 for a definition), and so cannot be used for quantum secret-key
agreement. It is known that bound entangled quantum states exist [19].

Gisin, Renner, and Wolf give several examples of distributions PXYZ with
finite Z and positive intrinsic mutual information (and thus positive infor-
mation of formation), but for which there are no clear secret-key agreement
strategies. These examples are obtained by having Alice, Bob, and Eve mea-
sure bound entangled quantum states in some specific bases. More generally,
they prove that entangled states can always yield distributions with positive
intrinsic information regardless of the way Eve measures them, and that
such does not happen when the state is not entangled (in other words, there
is a measurement for Eve that kills the intrinsic information). Therefore,
there is a correspondence between entanglement and the positivity of the
intrinsic mutual information, or, equivalently, the positivity of the informa-
tion of formation. Inspired by this, they define a classical analogue of bound
entanglement.
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Definition 4.16 ([12, Definition 2]) A distribution PXYZ is said to have bound
information if it satisfies I(X; Y ↓ Z) > 0 and S(X; Y||Z) = 0.

It is now widely believed that distributions with bound information exist,
which would imply that the positivity conjecture is false. Note that, based on
what we have seen before, a distribution with bound information requires
shared secret bits to be created, but no secret-key can be extracted from
it. However, it can happen that the positivity conjecture holds (and thus
there do not exist distributions with bound information), but there might
still exist a distribution PXYZ with Z unbounded such that S(X; Y||Z) = 0,
I(X; Y ↓ Z) = 0, and Iform(X; Y|Z) > 0, since Lemma 4.14 only applies to
finite Z.

It was conjectured in [12] that bound entangled quantum states would al-
ways give rise to classical distributions with zero secret-key rate. This was
shown to be false by Horodecki et al. [16]. Therefore, bound entanglement
does not provide an exact correspondence to bound information, although
one can still interpret the fact that a distribution arises from a bound entan-
gled quantum state as positive evidence towards the fact that it has bound
information. Nevertheless, most of the candidates for bound information
arise from measuring bound entangled quantum states, and Z has finite
range in all of them.

Besides the connection to bound entanglement in quantum information the-
ory, there are other results that lead us to believe that bound information
does exist even for distributions with finite Z, and thus that the positiv-
ity conjecture is false. Acı́n, Cirac, and Masanes [1] showed that tripartite
bound information exists. More specifically, they give an example of a distri-
bution PABCE that cannot be created solely from local operations and public
communication, and such that no subset of two parties of A, B, and C can
agree on a secret-key, even with the help of the third party. More recently,
Prettico and Bae [34] showed that four-partite bound information exists.

We now show that a natural approach towards settling the positivity conjec-
ture is extremely limited by analyzing the relationship between the intrinsic
mutual information and the improved upper bounds on the secret-key rate
from Section 4.1. If one wants to prove that a certain probability distribution
PXYZ with I(X; Y ↓ Z) > 0 has bound information, then one must show that
S(X; Y||Z) = 0. A natural approach would be to try to compute the value
of one of the other improved upper bounds, and hope that it equals zero.
This is reasonable, since these upper bounds are generally tighter than the
intrinsic mutual information.

The next theorem shows that the reduced intrinsic mutual information is
largely useless for establishing that a distribution has bound information.
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Theorem 4.17 Fix a distribution PXYZ such that at least one of X and Y is a finite
random variable. Then, I(X; Y ↓ Z) > 0 if and only if I(X; Y ↓↓ Z) > 0.

Before delving into the proof, we need an auxiliary result. The intrinsic
mutual information satisfies a continuity property on the side information
U.

Lemma 4.18 Fix a probability distribution PXYZ such that either X or Y is a finite
random variable. Then, for every ε > 0 there is δ > 0 such that H(U) < δ implies

|I(X; Y ↓ Z)− I(X; Y ↓ ZU)| < ε.

Gohari and Anantharam [13, Lemma A1.2] proved this property for X, Y, Z,
and U with finite ranges. We extend the lemma to the case where Z and U
are arbitrary discrete random variables, provided one of X or Y is a finite
random variable, through a slightly simplified proof.

Proof (Lemma 4.18) We follow a similar path to the proof of [13, Lemma
A1.2]. Suppose, without loss of generality, that X is a finite random variable
with range of cardinality k. Fix δ > 0 and an arbitrary discrete random
variable U such that H(U) < δ. Furthermore, let W be a discrete random
variable such that XY → ZU → W holds. We will construct a random
variable W ′ such that XY → Z → W ′ holds, and furthermore I(X; Y|W) is
close to I(X; Y|W ′). Consider W ′, with the same range as W, defined by

PW ′|X=x,Y=y,Z=z(w) = PW|U=uz,Z=z(w),

where uz := argmaxu PU|Z=z(u) (if there are several such maximizers, pick
one of them arbitrarily). Note that uz is well-defined for every z in the range
of Z since, if U|Z = z has infinite range, then we must have PU|Z=z(u) → 0
as u→ ∞. Suppose that PU|Z=z(0) > 0 without loss of generality. Therefore,
there exist only finitely many u such that PU|Z=z(u) ≥ PU|Z=z(0) holds, and
uz is one of them.

It follows immediately that XY → Z → W ′ holds. Additionally, we can
couple W and W ′ as follows: Given X = x, Y = y, and Z = z, we sample
U. If U = uz, then we sample W given Z = z and U = uz and set W ′ = W.
If U 6= uz, then we sample W given Z = z and U, and W ′ given Z = z and
U = uz. Our goal is to bound |I(X; Y|W)− I(X; Y|W ′)|. Let V := 1{W=W ′}.
Note that

|I(X; Y|WW ′)− I(X; Y|W)| = |I(X; Y|WW ′V)− I(X; Y|W)| ≤
≤ |I(X; Y|WW ′V)− I(X; Y|WV)|+ H(V) ≤ Pr[V = 0] log(k) + H(V),

where the first inequality follows from Lemma 2.13, and the second inequal-
ity holds because I(X; Y|WW ′, V = 1) = I(X; Y|W, V = 1) and I(X; Y|Z) ≤
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log |X |. It remains to bound Pr[V = 0]. We have

Pr[V = 0] = ∑
z

PZ(z)Pr[V = 0|Z = z] ≤∑
z

PZ(z)Pr[U 6= uz|Z = z].

We also know that

δ > H(U) ≥ H(U|Z) = ∑
z

PZ(z)H(U|Z = z) ≥∑
z

PZ(z)H∞(U|Z = z) =

= −∑
z

PZ(z) log PU|Z=z(uz) ≥ − log

(
∑

z
PZ(z)PU|Z=z(uz)

)
,

where the first inequality follows by hypothesis, the second inequality fol-
lows because conditioning reduces entropy, the third inequality follows be-
cause Shannon entropy is at least as large as min-entropy, and the fourth
inequality follows by Jensen’s inequality, since log is concave. Therefore,

∑
z

PZ(z)PU|Z=z(uz) > 2−δ,

which implies that

Pr[V = 0] ≤∑
z

PZ(z)Pr[U 6= uz|Z = z] < 1− 2−δ.

Finally, we can conclude that

|I(X; Y|WW ′)− I(X; Y|W)| < (1− 2−δ) log(k) + h(2−δ) =: f (δ).

By an analogous reasoning, we have

|I(X; Y|WW ′)− I(X; Y|W ′)| < f (δ).

Fix now a sequence (Wi) of discrete random variables such that XY →
ZU →Wi holds, and

I(X; Y|Wi)→ I(X; Y ↓ ZU).

Then, there exists a sequence (W ′i ) of discrete random variables such that
XY → Z →W ′i holds, and

|I(X; Y|Wi)− I(X; Y|W ′i )| < 2 f (δ).

Therefore,

I(X; Y ↓ ZU) ≤ I(X; Y ↓ Z) ≤ I(X; Y ↓ ZU) + 2 f (δ),

because I(X; Y ↓ Z) ≤ I(X; Y|W ′i ) for all i. The first inequality is due to
the fact that, if Eve has access to ZU, she can in particular discard U and
consider channels PZ|Z only. Since f (δ) → 0 when δ → 0, we obtain the
desired result. �
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We can now proceed to the proof of Theorem 4.17.

Proof (Theorem 4.17) Suppose we have I(X; Y ↓↓ Z) = 0. Then, there exists
a sequence of random variables (Ui) such that

I(X; Y ↓ ZUi) + H(Ui)→ 0.

In particular, this implies that H(Ui)→ 0. By Lemma 4.18, it follows that

I(X; Y ↓ ZUi)→ I(X; Y ↓ Z),

which implies that I(X; Y ↓ Z) = 0. �

Theorem 4.17 implies that we can largely ignore the reduced intrinsic mutual
information when studying bound information and the positivity conjecture,
as it does not provide extra insight beyond the intrinsic mutual information
for most tractable distributions, and is usually much harder to compute.
Nevertheless, the reduced intrinsic mutual information allows us to show
the existence of classes of distributions with asymptotic bound information,
that is, a sequence of distributions PXiYiZi such that Iform(Xi; Yi|Zi) > c for
all i and some constant c > 0, but S(Xi; Yi||Zi) → 0. Renner and Wolf [36]
show this by presenting a sequence of distributions that satisfies I(Xi; Yi ↓
Zi) > 1/2 for all i, but I(Xi; Yi ↓↓ Zi)→ 0.

We now turn our attention to the bound GA(X; Y|Z). In this case, we are
looking for distributions PXYZ such that I(X; Y ↓ Z) > 0, but

GA(X; Y|Z) = inf
J
[I(X; Y|J) + I(XY; J|Z)] = 0,

where J is an arbitrary discrete random variable. The following theorem
states that GA(X; Y|Z) cannot help us settle the positivity conjecture when-
ever X, Y, and Z are all finite.

Theorem 4.19 Let X, Y, and Z be random variables with finite ranges. Then
GA(X; Y|Z) = 0 if and only if I(X; Y ↓ Z) = 0.

Proof Suppose G(X; Y|Z) = 0. Since X, Y, and Z are finite, it follows, by
Lemma 4.7, that there exists a discrete random variable J such that

I(X; Y|J) + I(XY; J|Z) = 0.

In particular, we have I(XY; J|Z) = 0, which implies that XY → Z → J
holds. Therefore,

I(X; Y ↓ Z) ≤ I(X; Y|J) = 0,

which concludes the proof. �
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In the remainder of this section, we extend the connection between the pos-
itivity of GA(X; Y|Z) and of the intrinsic mutual information to distribu-
tions PXYZ with unbounded ranges, under certain conditions. The associ-
ated result can be seen in two ways, either as making the computation of
I(X; Y ↓ Z) slightly simpler when Z is infinite, or as a pessimistic result
showing that a separation between I(X; Y ↓ Z) and GA(X; Y|Z) when Z has
unbounded range is hard to prove, if it exists.

If we wish to prove that a distribution satisfies I(X; Y ↓ Z) = 0 where Z
has unbounded range, then we cannot use Lemma 4.3 to deduce the exis-
tence of a channel PZ|Z such that I(X; Y|Z) = 0. Therefore, the computation
of the intrinsic mutual information can be very complex in this case. The
following theorem slightly simplifies the process. Intuitively, it states that,
for distributions PXYZ with possibly unbounded ranges satisfying some con-
straints, if we have a sequence (Ji) of finite random variables whose ranges
do not grow too fast with i such that Ji is almost conditionally independent
of XY given Z for large i, and I(X; Y|Ji)→ 0, then this is already proof that
I(X; Y ↓ Z) = 0.

On the other hand, the following theorem also provides some evidence that
using GA(X; Y|Z) to establish the existence of bound information when Z
has unbounded range is likely fruitless. In fact, if I(X; Y ↓ Z) > 0, we
would be forced to analyze complex sequences of random variables with
fast-growing ranges in order to prove that GA(X; Y|Z) = 0.

Theorem 4.20 Let PXYZ be a discrete distribution such that X and Y are finite
random variables. If there exists a sequence (Ji) of finite random variables with
corresponding ranges Ji such that

ε i := I(X; Y ↓ Ji) + I(XY; Ji|Z)→ 0

and log |Ji| = o(1/
√

ε i), then I(X; Y ↓ Z) = 0.

Note that the condition of the theorem implies that GA(X; Y|Z) = 0. Before
we delve into the proof of Theorem 4.20, we need an auxiliary lemma. The
following lemma was proved by Ho and Yeung [15]. Intuitively, it states that
if two finite distributions are close in statistical distance, then the difference
between their entropies is small.

Lemma 4.21 ([15, Theorem 6]) Suppose P and Q are probability distributions
with finite ranges contained in a set of cardinality M, and assume ∆(P, Q) ≤ ε <
2(M−1)

M . Then

|H(P)− H(Q)| ≤ h
( ε

2

)
+

ε

2
log(M− 1).

In particular, the entropy H(·) is continuous with respect to the statistical distance
metric for finite random variables.

78



4.2. The positivity conjecture and bound information

We proceed to the proof of Theorem 4.20.

Proof (Theorem 4.20) Fix random variables X, Y, and Z satisfying the con-
ditions of the theorem statement. Suppose there exists a sequence (Ji) of
random variables such that

ε i := I(X; Y|Ji) + I(XY; Ji|Z)→ 0,

with corresponding finite range Ji such that

log |Ji| = o(1/
√

ε i).

In particular, we have I(X; Y|Ji) ≤ ε i and I(XY; Ji|Z) ≤ ε i. The idea of
the proof is as follows: We will define a random variable J′i from Ji such
that XY → Z → J′i holds, and I(X; Y|J′i ) is close to I(X; Y|Ji). We can then
conclude that I(X; Y ↓ Z) = 0 by making i → ∞. Intuitively, this is possible
because I(XY; Ji|Z) ≤ ε i implies that Ji is almost conditionally independent
of X and Y given Z.

Consider J′i , with the same range as Ji, such that

PJ′i |X=x,Y=y,Z=z(j) = PJi |Z=z(j),

for all x, y, z, and j. It follows immediately that XY → Z → J′i holds. We
have that I(XY; Ji|Z) ≤ ε i is equivalent to

∑
z

PZ(z)D(PXYJi |Z=z||PXY|Z=zPJi |Z=z) ≤ ε i. (4.1)

Let Dz(ε i) := D(PXYJi |Z=z||PXY|Z=zPJi |Z=z). Note that EZ[DZ(ε i)] ≤ ε i by
Inequality 4.1. By Pinsker’s inequality, it follows that

∆(PXYJi |Z=z, PXY|Z=zPJi |Z=z) ≤

√
2Dz(ε i)

log(e)
=: δz(ε i), (4.2)

for all z. Furthermore, we have

δz(ε i) ≥ ∑
x,y,j
|PXYJi |Z=z(x, y, j)− PXY|Z=z(x, y)PJi |Z=z(j)| =

= ∑
x,y,j

PXY|Z=z(x, y)|PJi |X=x,Y=y,Z=z(j)− PJ′i |Z=z(j)|, (4.3)

from expanding the expression for the statistical distance in Inequality 4.2
and noting that PJi |Z=z = PJ′i |Z=z. For simplicity, let

dxyz(ε i) := ∑
j
|PJi |X=x,Y=y,Z=z(j)− PJ′i |Z=z(j)| = ∆(PJi |X=x,Y=y,Z=z, PJ′i |Z=z).
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Note that EXY[dXYZ(ε i)|Z = z] ≤ δz(ε i) holds by Inequality 4.3. We are in-
terested in bounding the difference between I(X; Y|Ji) and I(X; Y|J′i ). Note
that

I(X; Y|J′i ) = I(X; Y) + H(J′i |X) + H(J′i |Y)− H(J′i |XY)− H(J′i ).

It holds that H(J′i ) = H(Ji). Thus, it suffices to show that H(J′i |X) is very
close to H(Ji|X), and similarly for Y and XY in place of X. We have, for all
z, and every x in the range of X|Z = z,

∆(PJi |X=x,Z=z, PJ′i |Z=z) = ∑
j
|PJi |X=x,Z=z(j)− PJ′i |Z=z(j)| ≤

≤∑
y

PY|X=x,Z=z(y)∑
j
|PJi |X=x,Y=y,Z=z(j)− PJ′i |Z=z(j)| =

= EY[dXYZ(ε i)|X = x, Z = z], (4.4)

by introducing Y and applying the triangle inequality. We will now pro-
ceed to bound ∆(PJi |X=x, PJ′i |X=x) for all x, which will allow us to bound the
difference between H(Ji|X) and H(J′i |X). We have

∆(PJi |X=x, PJ′i |X=x) ≤∑
z

PZ|X=x(z)∑
j
|PJi |X=x,Z=z(j)− PJ′i |Z=z(j)| ≤

≤ EYZ[dXYZ(ε i)|X = x] =: dx(ε i),

for all x, where the first inequality follows by introducing Z and applying
the triangle inequality, and the second inequality follows from Inequality 4.4.
We can apply Lemma 4.21 to obtain

|H(Ji|X = x)− H(J′i |X = x)| ≤ h
(

dx(ε i)

2

)
+

dx(ε i)

2
log |Ji|, (4.5)

for all x such that dx(ε i) <
2(|Ji |−1)
|Ji | . If x is such that dx(ε i) ≥ 2(|Ji |−1)

|Ji | , then
the best bound we have is

|H(Ji|X = x)− H(J′i |X = x)| ≤ log |Ji|.

Note that

EX[dX(ε i)] = EXYZ[dXYZ(ε i)] ≤ EZ[δZ(ε i)] = EZ

[√
2DZ(ε i)

log(e)

]
≤

≤

√
2EZ[DZ(ε i)]

log(e)
≤
√

2ε i

log(e)
=: δ(ε i), (4.6)

where the first inequality follows from the fact that

EXY[dXYZ(ε i)|Z = z] ≤ δz(ε i)
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by Inequality 4.3, the second inequality follows from Jensen’s inequality,
since the square root is concave, and the third inequality follows from the
fact that EZ[DZ(ε i)] ≤ ε i by Inequality 4.1.

We now need to control how much probability is put into x where we cannot
apply the bound of Lemma 4.21. Fix i, and call x bad if dx(ε i) ≥ 2(|Ji |−1)

|Ji | .
Note that we can assume that |Ji| > 1 for all i, since otherwise Ji is constant
and we can take J′i = Ji. Then we must have

Pr[X bad] ≤ δ(ε i), (4.7)

since

δ(ε i) ≥ EX[dX(ε i)] ≥ Pr[X bad] · 2(|Ji| − 1)
|Ji|

≥ Pr[X bad].

Therefore, for large enough i,

|H(Ji|X)− H(J′i |X)| ≤∑
x

PX(x)|H(Ji|X = x)− H(J′i |X = x)| ≤

≤ EX

[
h
(

dX(ε i)

2

)
+

dX(ε i)

2
log |Ji|

]
+ δ(ε i) log |Ji| ≤

≤ h
(

δ(ε i)

2

)
+

3δ(ε i)

2
log |Ji|,

where the first inequality follows from the triangle inequality, the second
inequality follows from Inequalities 4.5 and 4.7, and the third inequality
holds because of Jensen’s inequality, since h is concave, Inequality 4.6, and
the fact that δ(ε i) < 1 for large enough i. Note also that h

(
dX(εi)

2

)
is well-

defined since dxyz(ε i) ≤ 2 always.

By an analogous reasoning with Y and XY in place of X, we obtain the
same bound for |H(Ji|Y)− H(J′i |Y)| and |H(Ji|XY)− H(J′i |XY)|. Finally, it
follows, by combining the previous inequalities, that

|I(X; Y|Ji)− I(X; Y|J′i )| ≤ 3
(

h
(

δ(ε i)

2

)
+

3δ(ε i)

2
log |Ji|

)
,

for large enough i. Note that we have δ(ε i) = O(
√

ε i). Furthermore, since
log |Ji| = o(1/

√
ε i), it follows that

lim
i→∞
|I(X; Y|Ji)− I(X; Y|J′i )| = 0.

Therefore, we obtain a sequence (J′i ) of random variables such that XY →
Z → J′i holds for all i, and

I(X; Y|J′i )→ 0,

which implies that I(X; Y ↓ Z) = 0. �

In the next section, we study a candidate distribution for bound information,
proposed by Renner and Wolf [36].
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4.3 A candidate for bound information

In this section, we introduce and analyze a class of distributions suggested
by Renner and Wolf [36, Section 5] as a potential example of distributions
with bound information. Unlike the examples suggested in [12], this class
of distributions is not motivated by bound entangled quantum states, but
rather by a distribution PXYZ satisfying

S(X; Y||Z) < I(X; Y ↓ Z).

Nevertheless, it was shown that such a class of distributions actually gives
rise to a (at the time previously unknown) bound entangled quantum state [36].
While we know that in general this is not a guarantee that the classical dis-
tribution has bound information (by results of [16] already mentioned), it
provides some positive evidence for this fact.

The marginal distributions for X and Y, parameterized by a positive real
number a, are defined in Table 4.1. The random variable Z is defined as

X
0 1 2 3

Y

0 1/8 1/8 a a
1 1/8 1/8 a a
2 a a 1/4 0
3 a a 0 1/4

Table 4.1: A candidate for bound information [36]. Note that the entries must be normalized
by 8a + 1.

follows:

Z =


X⊕Y if X, Y ∈ {0, 1}
X mod 2 if X, Y ∈ {2, 3}
(X, Y) otherwise.

We have the following conjecture.

Conjecture 4.22 ([36]) The distribution PXYZ defined above has bound informa-
tion for some a ≥ 0.

Let us first look at the case a = 0. In this case, it holds that S(X; Y||Z) ≥ 1,
since Alice and Bob can extract U := bX/2c from both X and Y, which
is completely unknown to Eve. Furthermore, note that Z and U jointly
determine X and Y completely, and so I(X; Y|ZU) = 0, which implies that

I(X; Y ↓↓ Z) ≤ H(U) = 1.
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We can then conclude that S(X; Y||Z) = 1. It can also be shown that I(X; Y ↓
Z) = 3/2. This was the distribution used by Renner and Wolf [36] to prove
that S(X; Y||Z) 6= I(X; Y ↓ Z) in general.

We proceed to show that every distribution in this class has positive intrinsic
mutual information. Note that, since Z has finite range, this distribution
has positive information of formation if and only if it has positive intrinsic
mutual information, due to Lemma 4.14.

Lemma 4.23 We have I(X; Y ↓ Z) > 0 for all a ≥ 0. Therefore, Iform(X; Y|Z) >
0 for all a ≥ 0.

Proof Fix a ≥ 0. Suppose, in view of a contradiction, that I(X; Y ↓ Z) = 0.
This implies, by Lemma 4.3, that there is a channel PZ|Z such that I(X; Y|Z) =
0. Let Z be the range of Z, and fix z ∈ Z . We must have I(X; Y|Z = z) = 0,
or equivalently, it must hold that X and Y are conditionally independent
given Z = z. We will show that this implies that Pr[X = 2, Y = 2|Z = z] = 0.
Since the choice of z was arbitrary, it follows that Pr[X = 2, Y = 2] = 0,
which is clearly false.

We know that

Pr[X = 2, Y = 3] = Pr[X = 3, Y = 2] = 0,

which implies that

Pr[X = 2, Y = 3|Z = z] = Pr[X = 3, Y = 2|Z = z] = 0.

By the conditional independence hypothesis, we must have

Pr[X = 2|Z = z] = 0 or Pr[Y = 3|Z = z] = 0,

and
Pr[X = 3|Z = z] = 0 or Pr[Y = 2|Z = z] = 0.

We proceed by cases:

1. Pr[X = 2|Z = z] = 0:

Then we immediately have

Pr[X = 2, Y = 2|Z = z] = Pr[X = 2|Z = z]Pr[Y = 2|Z = z] = 0

via the conditional independence hypothesis.

2. Pr[Y = 2|Z = z] = 0:

Reasoning analogous to (i).
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3. Pr[X = 3|Z = z] = 0 and Pr[Y = 3|Z = z] = 0:

We must have
Pr[X = 3, Y = 3|Z = z] = 0.

Let p := PZ|Z(z, 1). Then we can rewrite

Pr[X = 3, Y = 3|Z = z] =
p

4 Pr[Z = z](8a + 1)
,

which implies that p = 0. It follows that

Pr[X = 0, Y = 1|Z = z] =
p

8 Pr[Z = z](8a + 1)
= 0,

and
Pr[X = 1, Y = 0|Z = z] =

p
8 Pr[Z = z](8a + 1)

= 0.

By the conditional independence hypothesis, we have that either

Pr[X = 0, Y = 0|Z = z] = 0,

or
Pr[X = 1, Y = 1|Z = z] = 0.

Suppose Pr[X = 0, Y = 0|Z = z] = 0. The reasoning in the other case
is analogous. Let q := PZ|Z(z, 0). Then we have

Pr[X = 0, Y = 0|Z = z] =
q

8 Pr[Z = z](8a + 1)
= 0,

which implies that q = 0. Therefore

Pr[X = 2, Y = 2|Z = z] =
q

4 Pr[Z = z](8a + 1)
= 0.

�

The reasons why this class of distributions seems like a good example for
proving the existence of bound information are, first, that all distributions in
the class have positive intrinsic mutual information (and thus positive infor-
mation of formation), and second, that there seem to be no useful strategies
for secret-key agreement besides Alice and Bob computing UX := bX/2c
and UY := bY/2c, respectively, discarding everything else, and then run-
ning some protocol on the (UX, UY) pairs. It seems intuitive that such a
strategy stops working for a large enough value of a. In fact, for large a, Eve
knows a considerable fraction of the (X, Y) pairs, and thus the correspond-
ing (UX, UY) pairs. At the same time, Alice and Bob initially have no idea
about which pairs (UX, UY) satisfy UX 6= UY (and thus they do not know

84



4.3. A candidate for bound information

which pairs Eve knows), and public discussion may yield too much infor-
mation to Eve about the remaining pairs (her initial information about them
consists only of the fact that UX = UY).

We will now study this strategy more carefully. Suppose Alice and Bob
receive X and Y, respectively, then compute bits UX and UY, and discard
everything else. For a fixed a ≥ 0, we have

Pr[UX = 0] = Pr[UY = 0] =
1
2

and Pr[UX = UY] =
1

8a + 1
.

If UX = UY, then Eve receives Z = 0 or Z = 1, which gives no information
about UX and UY, besides the fact that UX = UY. On the other hand, if
UX 6= UY, then Eve receives (X, Y), which allows her to compute UX and
UY. We are then interested in the quantity S(UX; UY||Z).

Consider now random variables X′, Y′ ∈ {0, 1}, and Z′ ∈ {0}∪{(1, 0), (1, 1)}
with joint probability distribution PX′Y′Z′ defined in Table 4.2. Whenever

X′

0 1

Y′ 0 1 [0] 8a [(1,1)]
1 8a [(1,0)] 1 [0]

Table 4.2: The distribution obtained if Alice and Bob follow a strategy based only on UX and
UY. Note that each entry in the table must be normalized by 2(8a + 1). If the entry in row i,
column j is p [k], then this means that Pr[X = j, Y = i, Z = k] = p.

X′ = Y′, we have Z = 0, while if X′ 6= Y′, Eve gets Z = (1, X′). This means
that, if X′ = Y′, Eve only learns that X′ = Y′ and nothing else, while if
X′ 6= Y′, then Eve learns both X′ and Y′. From these observations and the
previous discussion, it is clear that

S(UX; UY||Z) = S(X′; Y′||Z′),

and thus we will turn to analyzing PX′Y′Z′ instead. We can try applying the
lower and upper bounds of Lemma 2.15 first. We have

I(X′; Y′)− I(X′; Z′) = H(X′|Z′)− H(X′|Y′) = 1
8a + 1

− h
(

1
8a + 1

)
< 0,

for large enough a, since p < h(p) for p small enough, and similarly for X′

switched with Y′. On the other hand,

I(X′; Y′) = 1− h
(

1
8a + 1

)
> 0,

and
I(X′; Y′|Z′) = 1

8a + 1
I(X′; Y′|Z′ = 0) =

1
8a + 1

.
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While these bounds do not help us settle whether the secret-key rate is pos-
itive or zero, they do show that the secret-key rate approaches zero as a
grows. We will turn to the intrinsic mutual information for a sharper analy-
sis of the secret-key rate.

The following theorem implies that, for a large enough, no secret-key agree-
ment strategy for PXYZ that depends only UX and UY can succeed.

Theorem 4.24 We have
I(X′; Y′ ↓ Z′) > 0

if and only if a < 1/8. Therefore,

S(UX; UY||Z) = S(X′; Y′||Z′) = 0

holds for a ≥ 1/8.

Before we proceed to the proof of this theorem, we need the following aux-
iliary result.

Lemma 4.25 ([12, Part of Example 2]) Let (bi) and (ci) be two finite sequences
such that bi ≥ 0, ci ≥ 0 for all i, ∑i bi = ∑i ci = 1, and such that ci = 0 implies
bi = 0. Then

∑
i:ci>0

b2
i

ci
≥ 1.

We are now ready to prove Theorem 4.24.

Proof (Theorem 4.24) The proof of this theorem is inspired by the analysis
of Example 2 in [12].

Fix a channel PZ|Z′ , and let Z be the range of Z. Furthermore, define

bi := PZ|Z′(i, 0), ci := PZ|Z′(i, (1, 0)), di := PZ|Z′(i, (1, 1)), (4.8)

for each i ∈ Z . We will derive conditions which the sequences (bi), (ci), and
(di) must satisfy so that

I(X′; Y′|Z = i) = 0

holds for all i, or, in other words, such that X′ and Y′ are conditionally
independent given Z = i for all i.

For simplicity, let α := 2(8a + 1), and let αi := α Pr[Z = i]. The distribution
PX′Y′|Z=i is shown in Table 4.3.

Our goal will be to re-derive the value of entry (1,0) in the table using the
hypothesis that X′ and Y′ are conditionally independent given Z = i.

We have
Pr[X′ = 0|Z = i] =

bi + 8aci

αi
.
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X′

0 1

Y′ 0 bi 8adi
1 8aci bi

Table 4.3: Distribution PX′Y′ |Z=i. Each entry must be normalized by αi.

Suppose now that I(X′; Y′|Z = i) = 0 and ci > 0. We then have

Pr[X′ = 0|Z = i] · Pr[Y′ = 0|Z = i] =
bi

αi
,

and thus
Pr[Y′ = 0|Z = i] =

bi

bi + 8aci
.

Furthermore,

Pr[X′ = 1|Z = i] · Pr[Y′ = 1|Z = i] =
bi

αi
,

which implies that

Pr[X′ = 1|Z = i] =
bi(bi + 8aci)

αi · 8aci
.

We can then compute

Pr[X′ = 1|Z = i] · Pr[Y′ = 0|Z = i] =
b2

i
αi · 8aci

.

By inspecting the table, it finally follows that

8adi =
b2

i
8aci

,

or, equivalently, that

di =
b2

i
64a2ci

,

whenever ci > 0. On the other hand, if ci = 0, we must have either

Pr[X′ = 0|Z = i] = 0 or Pr[Y′ = 1|Z = i] = 0.

Both cases imply that bi = 0.

Note that we must have ∑i di = 1. Therefore, it must hold that

∑
i:ci>0

b2
i

64a2ci
≤ 1,
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4. A general challenge – when is secret-key agreement possible?

or, equivalently,

∑
i:ci>0

b2
i

ci
≤ 64a2. (4.9)

We can now make some observations about this. If bi ≥ 0, ci ≥ 0 for all i,
∑i bi = ∑i ci = 1, and if ci = 0 implies bi = 0, then it holds that

∑
i:ci>0

b2
i

ci
≥ 1

by Lemma 4.25. Therefore, in order for Inequality 4.9 to hold, we must have
64a2 ≥ 1, or equivalently, a ≥ 1/8. We can then conclude that

I(X′; Y′ ↓ Z′) > 0

whenever a < 1/8, by Lemma 4.3, since in this case there is no channel PZ|Z
such that I(X′; Y′|Z) = 0.

If a ≥ 1/8, it is straightforward to see that the random variable Z with range
{0, 1} induced by the distribution PZ|Z given by b0 = d0 = 1, b1 = d1 = 0,
c0 = 1/64a2, and c1 = 1 − 1/64a2 satisfies I(X; Y|Z) = 0. We can then
conclude that I(X′; Y′ ↓ Z′) = 0 whenever a ≥ 1/8. �

The result of Theorem 4.24 provides good evidence that the joint probability
distribution in this section has bound information, since it shows that the
only clear strategy for secret-key agreement cannot work whenever a is large
enough.

In fact, we can easily get a slightly stronger result. Note that, given UX = 0,
Alice can perfectly simulate X by sampling uniformly random bits, and the
same is true for Bob with UY and Y in place of UX and X. Let X′′ be defined
as X′′ = (0, R), whenever UX = 0, where R is a random bit, and X′′ = 1
whenever UX = 1. Let Y′′ be defined analogously. Since X′′ and Y′′ can be
perfectly simulated from X′ and Y′ alone, the secret-key rate for (X′′, Y′′, Z′)
is zero whenever secret-key agreement is impossible from (X′, Y′, Z′).

Corollary 4.26 We have
S(X′′; Y′′||Z′) = 0

whenever a ≥ 1/8. Therefore, any secret-key agreement strategy for PXYZ which
may depend on X when UX = 0 but only depends on UX when UX = 1, and
analogously for Y and UY, cannot possibly work.

In other words, Corollary 4.26 implies that a successful secret-key agree-
ment strategy for PXYZ must use the fact that X = 2 or X = 3 (respectively
Y = 2 or Y = 3) in some non-trivial way, besides using it to compute UX
(respectively UY).
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Nevertheless, while it seems intuitive that the distribution studied in this
section has bound information, it is still not clear exactly how one could
prove that no strategy produces a secret-key. A possible approach to this
challenge is to make use of the concept of binarizations, introduced by Gisin,
Renner, and Wolf [12].

Definition 4.27 ([12, Part of Proposition 5]) A distribution PXYZ is said to have
a binarization if for all ε > 0 there exists an integer N and channels PX|XN and
PY|YN with X, Y ∈ {0, 1,⊥} such that, if E denotes the event that X 6= ⊥ 6= Y and
E′ denotes the event that X = Y 6= ⊥, then

• Pr[E] > 0;

• Pr[E′|E] > 1− ε;

• Pr[X = 0|E′] = Pr[X = 1|E′] = 1/2;

• H(X|ZN , E) > 1− ε.

The following lemma, proved in [12], showcases why binarizations may be
relevant to settle the existence of bound information.

Lemma 4.28 ([12, Proposition 5]) A distribution PXYZ satisfies S(X; Y||Z) > 0
if and only if it has a binarization.

Therefore, a possible way of proving that our distribution of interest has zero
secret-key rate is to prove that it does not have a binarization. A plausible
way of achieving this would be to show that any binarization for PXYZ could
be transformed into a binarization for PX′Y′Z′ , which we know does not have
a binarization for large a by Theorem 4.24. Intuitively, such a binarization
cannot depend much on something other than UX and UY. If it did, then
ensuring that X and Y agree with high probability whenever E happens
should cause Eve’s uncertainty about X to be relatively small.

Another possibility is to attempt to relate the existence of binarizations to
the problem of non-interactive correlation distillation [28][47]. We will see that
known results about non-interactive correlation distillation slightly improve
our understanding of binarizations for a wide class of distributions, and
point towards possibly deeper connections between the two topics.

Suppose Alice and Bob receive i.i.d. realizations XN and YN of random vari-
ables X and Y which are arbitrarily jointly distributed, for some integer N.
Intuitively, non-interactive correlation distillation consists in Alice and Bob
applying (randomized) functions to XN and YN so that they obtain bits X
and Y that are close to uniform and which coincide with high probability.
More precisely, we have the following definition.

Definition 4.29 ([47, Adaptation of Definitions 2, 4, and 5]) Given random vari-
ables X and Y with respective ranges X and Y , a (c, δ)-protocol for non-interactive
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correlation distillation consists of a sequence of randomized functions ϕA
N : X N →

{0, 1} and ϕB
N : YN → {0, 1} such that, if XN (resp. YN) is the output of ϕA

N(XN)
(resp. ϕB

N(Y
N)), then

lim inf
N
{2 Pr[XN = YN ]− 1} = c,

and
|Pr[XN = 1]− 1/2| ≤ δ, |Pr[YN = 1]− 1/2| ≤ δ

for large enough N.

The goal is to find protocols where c is arbitrarily close to 1 and δ is arbitrar-
ily close to 0, or prove that such protocols cannot exist. Yang [47] showed a
trade-off between c and δ for so-called regular distributions PXY. For a given
distribution PXY where X and Y are distributed over the same finite range
{1, . . . , n}, we associate with it the matrix M(PXY), where Mij = PXY(i, j).
We have the following definition.

Definition 4.30 ([47, Definition 7]) A finite distribution PXY where X and Y
have the same range is said to be regular if M(PXY) is symmetric and its largest
absolute eigenvalue is 1 with corresponding unique eigenvector (1, . . . , 1).

Theorem 4.31 ([47, Theorem 1]) If PXY is a regular distribution where X and Y
have range {1, . . . , n}, and such that the difference between the two largest absolute
eigenvalues of M(PXY) is g · n, then for any (c, δ)-protocol we must have

c ≤ 1− g(1− 4δ2).

Suppose PXYZ has a binarization where, for large enough N, we have

Pr[X = ⊥] = Pr[Y = ⊥] = 0,

i.e. Alice and Bob never abort. Then, one can see this binarization as a (1, δ)-
protocol for non-interactive correlation distillation for any δ > 0. In fact,
it is something much stronger, since it has to satisfy an additional secrecy
requirement. Theorem 4.31 implies that such a protocol cannot exist when
PXY is regular, since if δ is small enough, then c must be bounded away from
1. The corollary below follows immediately from this discussion.

Corollary 4.32 There exists no binarization for PXYZ that satisfies

Pr[X = ⊥] = Pr[Y = ⊥] = 0

for large enough N if PXY is a regular distribution.

Consider the candidate distribution of this section, whose marginal PXY can
be found in Table 4.1. It is easy to see the following.
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Lemma 4.33 The distribution PXY in Table 4.1 is regular for all a ≥ 0.

We have the following corollary, which limits the useful binarizations for
our candidate distribution.

Corollary 4.34 The candidate distribution of this section (Table 4.1) has no bina-
rization which satisfies

Pr[X = ⊥] = Pr[Y = ⊥] = 0

for large enough N.

Note that Corollary 4.34 provides only very slight evidence that the candi-
date distribution has bound information for large enough a. In fact, there
are many regular distributions which nevertheless have positive secret-key
rate, such as distributions arising from the satellite setting of Chapter 3, or
the candidate distribution with a = 0. Nevertheless, the regularity of the
candidate distribution, together with the other negative results of this sec-
tion, does seem to point that its structure makes it especially ammenable to
an impossibility argument for secret-key agreement, just like it was done for
non-interactive correlation distillation.

The main difference between a binarization and a protocol for non-interactive
correlation distillation is that Alice and Bob have the freedom to abort the
protocol if necessary. Nevertheless, it may be possible to translate some
techniques used to prove impossibility results in non-interactive correlation
distillation (namely, techniques from the analysis of boolean functions) to
the binarization setting.

In Section 4.4, we investigate ways of relaxing the definition of the secret-key
rate, their respective notions of bound information, and separations between
the various rates.

4.4 Relaxing bound information

Proving the existence of bound information seems to be currently a daunt-
ing task. A natural way to proceed is by relaxing the notion of bound in-
formation. For example, one can restrict the types of protocols allowed for
Alice and Bob, or change the setting slightly, and attempt to prove that the
new secret-key rate is zero while the intrinsic mutual information is positive,
which should be easier to tackle.

For example, one could restrict protocols to have one-way communication
between Alice and Bob. This yields the one-way secret-key rate Sow(X; Y||Z)
of Ahlswede and Csiszár [2] we have seen before. It is easy to see that bound
information exists with respect to Sow, i.e. there exist distributions PXYZ such
that Sow(X; Y||Z) = 0, but I(X; Y ↓ Z) > 0. In fact, something stronger is

91



4. A general challenge – when is secret-key agreement possible?

known to hold: There exist distributions PXYZ such that Sow(X; Y||Z) = 0,
but S(X; Y||Z) > 0, which yields a sharp separation between these two
notions of secret-key rate. Examples of such distributions arise, for example,
from the satellite setting of Chapter 3 (see Theorem 3.1).

Another separation was recently studied by Ozols, Smith, and Smolin [30].
The authors showcase a separation between the usual secret-key rate and the
so-called secret-key rate by public discussion. A more precise definition follows
below.

Definition 4.35 ([30, Section I], rewritten) The secret-key rate by public dis-
cussion of X and Y given Z, denoted by SPD(X; Y||Z), is defined like the secret-
key rate, except that Alice and Bob are restricted to protocols where every auxiliary
random variable used by Alice and Bob is made public, i.e. Alice’s secret-key is a
deterministic function of XN and the communication of the protocol C, and likewise
for Bob with YN in place of XN .

We have the following theorem.

Theorem 4.36 ([30, Theorem 2]) There exist distributions PXYZ such that S(X; Y||Z) >
0 and SPD(X; Y||Z) = 0 hold simultaneously.

We obtain the existence of bound information with respect to SPD as an
immediate corollary.

Corollary 4.37 There exists bound information with respect to SPD, i.e. there exists
a distribution PXYZ such that SPD(X; Y||Z) = 0 but Iform(X; Y|Z) > 0.

In the remainder of this section, we discuss the techniques used to prove
Theorem 4.36, and then investigate interesting concepts stemming from their
limitations. We finish this section by showing that the techniques developed
in [30] provide yet more evidence that the distribution studied in Section 4.3
has bound information for large enough a. The following definition will be
important throughout the rest of the section.

Definition 4.38 ([30, Section II]) A distribution PXYZ is said to be unambigu-
ous if each of X, Y, and Z is a deterministic function of the other two random
variables.

Recall the concepts introduced in Section 2.5. The strategy used in [30] is
as follows. To each finite distribution PXYZ, we can associate the following
pure quantum state, |ϕXYZ〉, defined as

|ϕXYZ〉 := ∑
x,y,z

√
PXYZ(x, y, z)|xyz〉.

Let ρXY denote the trace over Eve’s environment of |ϕXYZ〉.

The main theorem of [30] is the following.
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Theorem 4.39 ([30, Theorem 1]) If PXYZ is an unambiguous distribution, then

D(|ϕXYZ〉) ≥ SPD(X; Y||Z).

The bound of Theorem 4.39 can then be used to prove Theorem 4.36 by
exhibiting unambiguous distributions PXYZ such that D(|ϕXYZ〉) = 0, while
S(X; Y||Z) > 0.

A natural question follows: How far can this technique take us? In other
words, is there a class of distributions for which such a technique cannot
possibly succeed in presenting a separation between S and SPD? Obviously,
Theorem 4.39 does not tell us anything about distributions which are not
unambiguous. However, one can find such a limitation even among unam-
biguous distributions. The next lemma states that the technique of [30] does
not work for unambiguous distributions where X and Y are binary random
variables.

Lemma 4.40 If PXYZ is an unambiguous distribution with X, Y ∈ {0, 1} such
that S(X; Y||Z) > 0, then D(|ϕXYZ〉) > 0.

Proof Fix a distribution PXYZ satisfying the hypotheses of the lemma. By
Theorem 2.19, it suffices to show that ρXY is entangled. Since PXYZ is an
unambiguous distribution, we must have |Z| ≤ 4. Moreover, since its secret-
key rate is positive, it must hold that |Z| ≤ 3. Let zij be the value of Z
determined by X = i and Y = j. Furthermore, let pij := PXYZ(i, j, z(i, j)). We
consider three cases:

1. Z = {0}:

Since PXYZ is unambiguous and S(X; Y||Z) > 0, we can assume with-
out loss of generality that p00, p11 > 0 and p01 = p10 = 0. Let ρXY
be the trace over the environment of |ϕXYZ〉. It can be seen that the
partial transpose of ρXY with respect to Bob is

ρ>B
XY =


p00 0 0 0
0 0

√
p00 p11 0

0
√

p00 p11 0 0
0 0 0 p11

 .

Note that ρ>B
XY has eigenvalue −√p00 p11 < 0. By Theorem 2.19, it

follows that D(|ϕXYZ〉) > 0.

2. Z = {0, 1}:

Since PXYZ is unambiguous and S(X; Y||Z) > 0, we can assume with-
out loss of generality that p00, p01, p10 > 0, and that z00 = z11 = 0 and
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z01 = z10 = 1. Then, the partial transpose of ρXY with respect to Bob is

ρ>B
XY =


p00 0 0

√
p01 p10

0 p01
√

p00 p11 0
0

√
p00 p11 p10 0√

p01 p10 0 0 p11

 .

We now make use of Theorem 2.19. The partial transpose above can
be seen to have eigenvalues

λ1 =
1
2

(
p01 + p10 −

√
p2

01 − 2p01 p10 + 4p00 p11 + p2
10

)
,

and

λ2 =
1
2

(
p00 + p11 −

√
p2

00 − 2p00 p11 + 4p01 p10 + p2
11

)
.

It follows that the partial transpose has a negative eigenvalue, and thus
D(|ϕXYZ〉) > 0, whenever

p01 p10 6= p00 p11.

On the other hand, if p01 p10 = p00 p11, then X and Y are independent,
and so S(X; Y||Z) ≤ I(X; Y) = 0.

3. Z = {0, 1, 2}:

In this case we can assume without loss of generality that pij > 0 for
all pairs (i, j), and that z00 = z11 = 0, z01 = 1, z10 = 2. Then, the partial
transpose of ρXY with respect to Bob is

ρ>B
XY =


p00 0 0 0
0 p01

√
p00 p11 0

0
√

p00 p11 p10 0
0 0 0 p11

 ,

which has eigenvalue

λ =
1
2

(
p01 + p10 −

√
p2

01 − 2p01 p10 + 4p00 p11 + p2
10

)
,

along with three more non-negative eigenvalues. By Theorem 2.19, it
follows that D(|ϕXYZ〉) > 0 whenever p00 p11 > p01 p10. If p00 p11 =
p01 p10, then X and Y are independent, and so S(X; Y||Z) = 0. It re-
mains to consider the case p00 p11 < p01 p10. The reasoning used in the
proof of Theorem 4.24 can be used to show that, in this case, one has
I(X; Y ↓ Z) = 0, and so S(X; Y||Z) = 0. �

94



4.4. Relaxing bound information

Lemma 4.40 implies that a separation between S and SPD is still unknown
for unambiguous distributions with binary X and Y, and that the technique
previously discussed cannot help find such a separation directly. Therefore,
SPD seems more difficult to understand in this case. In view of this, we will
introduce another notion of secret-key rate, directly inspired by SPD. Then,
we will see that this notion can be further simplified, and we will investigate
possible techniques for showcasing a separation with respect to the secret-
key rate S. We also present a candidate witness distribution with binary X
and Y for this separation.

As we have previously seen, SPD can be thought of as the secret-key rate
restricted to protocols where every auxiliary random variable used to com-
pute the secret-key (besides XN and YN) must be made public. Note that
this does not mean that the local randomness used by Alice and Bob must be
made available to Eve, but rather that the secret-keys only depend on the lo-
cal randomness through the realizations received and the communication of
the protocol. It is thus natural to consider what happens if one forces Alice’s
and Bob’s local randomness to be public. This new setting can be modelled
by allowing Alice, Bob, and Eve to access a common reference string, which
consists of an arbitrarily long sequence of i.i.d. uniformly random bits, and
enforcing that all local randomness used in Alice’s and Bob’s protocol must
be extracted from it. More precisely, we have the following definitions.

Definition 4.41 A common reference string (CRS) is a randomized function
with input alphabet N and output alphabet {0, 1} which works as follows: If it
receives a query i ∈ N for the first time, it samples a bit uniformly at random and
independently of the outputs of other queries, and outputs the bit. If it receives a
repeated query i ∈ N, then it outputs the same bit that was originally sampled to
answer the first such query.

Definition 4.42 The secret-key rate with a common reference string of X and
Y given Z, denoted by SCRS(X; Y||Z), is defined like the secret-key rate, except
that Alice and Bob are restricted to deterministic protocols, i.e. protocols where
H(RA) = H(RB) = 0, and furthermore Alice, Bob, and Eve have access to the
same common reference string.

It is clear that SCRS(X; Y||Z) ≤ SPD(X; Y||Z), since a protocol in the CRS
setting can be used in the PD setting by having Alice and Bob make their
local randomness public before starting the protocol. In fact, we will show
that in the CRS setting we only need to consider a much simpler class of
protocols that do not use any local randomness (private or public), which
we will see makes SCRS a potentially much more tractable quantity.

Definition 4.43 ([13, Definitions 1 and 2]) The deterministic secret-key rate
of X and Y given Z, denoted by Sdet(X; Y||Z), is defined like the secret-key rate,
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except that Alice and Bob are restricted to deterministic protocols, i.e. protocols
where Alice and Bob do not use any local randomness (H(RA) = H(RB) = 0).

The following theorem shows that the common reference string is useless.

Theorem 4.44 We have

SCRS(X; Y||Z) = Sdet(X; Y||Z)

for all distributions PXYZ.

Proof This proof is very similar to the first part of the proof of [12, Proposi-
tion 5].

It is clear that
Sdet(X; Y||Z) ≤ SCRS(X; Y||Z)

holds, so it suffices to prove the opposite inequality.

We can assume without loss of generality that, in a given protocol for fixed
N, Alice and Bob access exactly the first ` bits of the common reference
string, for some ` independent of XN and YN , but which depends on N and
the protocol in question. The reason for this is the following: Let R denote
the bits of the common reference string which were accessed by Alice or Bob.
We can assume that if the i-th bit was accessed, then so was the j-th bit, for
j < i (the rate is not affected if Alice and Bob access bits they will not use).
Fix a protocol for some N and ε > 0. Then, for any 1/2 > δ > 0, there is `
large enough such that

Pr[|R| > `] < δ.

Consider the modified protocol where Alice and Bob both initially access the
first ` bits of the common reference string, and abort (i.e. they set SA = SB =
⊥) if any of them needs more than the first ` bits. Let F := 1{Alice and Bob abort},
let S′A and S′B denote the resulting keys of the modified protocol, and let C′

denote the communication of the modified protocol. Then

Pr[F = 1] < δ.

Note that

H(S′A) ≥ H(S′A|F) = Pr[F = 0]H(SA|F = 0) =
= H(SA|F)− Pr[F = 1]H(SA|F = 1) ≥ H(SA)− H(F)− δ log |S| ≥

≥ H(SA)− h(δ)− δ log |S|,

where the first inequality follows because conditioning reduces entropy, the
first equality follows because H(S′A|F = 0) = H(SA|F = 0), the second
inequality follows because H(SA|F) = H(SAF) − H(F) ≥ H(SA) − H(F)
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and because Pr[F = 1]H(SA|F = 1) ≤ δ log |S|, and the third inequality
follows because H(F) ≤ h(δ). Furthermore,

H(S′A|ZNC′F) = Pr[F = 0]H(SA|ZNC, F = 0) =

= H(SA|ZNCF)−Pr[F = 1]H(SA|ZNC, F = 1) ≥ H(SA|ZNC)− h(δ)− δ log |S|,

following the same reasoning as before. Finally,

Pr[S′A = S′B] = Pr[|R| > `] + ∑
n≤`

Pr[|R| = n]Pr[S′A = S′B||R| = n] ≥

≥∑
n

Pr[|R| = n]Pr[SA = SB||R| = n] = Pr[SA = SB],

because Pr[S′A = S′B||R| = n] = Pr[SA = SB||R| = n] for n ≤ `.

Therefore, making ` arbitrarily large (and thus δ arbitrarily close to 0) allows
us to obtain a secure protocol where R ∈ {0, 1}` with rate arbitrarily close to
that of the original protocol. It follows that Alice and Bob can be assumed
to access only at most a fixed number of bits ` in each protocol.

Suppose there is a protocol for N realizations in the CRS setting, where
Alice, Bob, and Eve share a string R consisting of ` i.i.d. uniformly random
bits, with communication C, and after which Alice and Bob hold random
variables SA and SB with finite range |S| satisfying

Pr[SA 6= SB] < ε

and
H(SA|ZNCR) > log |S| − ε

for some ε > 0.

Consider the functions e : {0, 1}` → [0, 1] defined by

e(r) := Pr[SA 6= SB|R = r],

and k : {0, 1}` → [0, log |S|] defined by

k(r) := log |S| − H(SA|ZNC, R = r).

Note that
ER[e(R)] = Pr[SA 6= SB] < ε,

and
ER[k(R)] = log |S| − H(SA|ZNCR) < ε.

It then follows that

Pr[e(R) < 2ε] > 1/2 and Pr[k(R) < 2ε] > 1/2,
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since, if Pr[e(R) < 2ε] ≤ 1/2, then Pr[e(R) ≥ 2ε] ≥ 1/2, and so

ER[e(R)] ≥ 1/2 · 2ε = ε,

which is a contradiction, and analogously for k(R). Therefore, there must
exist r∗ ∈ {0, 1}` in the range of R such that e(r∗) < 2ε and k(r∗) < 2ε, since
otherwise we would have

Pr[e(R) < 2ε or k(R) < 2ε] = Pr[e(R) < 2ε] + Pr[k(R) < 2ε] > 1.

Consider now the deterministic protocol where Alice and Bob run the pro-
tocol above with R = r∗. Suppose they obtain secret-keys S′A and S′B, respec-
tively, and communication C′. Then S′A and S′B have range contained in S ,
and furthermore

Pr[S′A 6= S′B] = Pr[SA 6= SB|R = r∗] = e(r∗) < 2ε,

and

H(S′A|ZNC′) = H(SA|ZNC, R = r∗) = log |S| − k(r∗) > log |S| − 2ε.

Thus, we also have

H(S′A) = H(SA|R = r∗) ≥ H(SA|ZNC, R = r∗) > log |S| − 2ε.

Therefore, since the choices of protocol and ε > 0 were arbitrary, and since
the deterministic protocol achieves the same asymptotic rate as the original
one in the CRS setting, it follows that

Sdet(X; Y||Z) ≥ SCRS(X; Y||Z),

which concludes the proof. �

A first reason why the equality showcased in Theorem 4.44 is useful for an-
alyzing the corresponding separation is that Gohari and Anantharam [13]
proved a connection between the deterministic secret-key rate and the prob-
lem of communication for omniscience by a neutral observer, which is a general-
ization of an earlier problem studied by Csiszár and Narayan [7]. Intuitively,
the goal of a protocol for communication for omniscience by a neutral ob-
server is for Alice and Bob to agree with high probability on a random
variable TA which allows Eve, who knows ZN , to have very low uncertainty
about XNYN .

Definition 4.45 ([13, Definition 3]) The communication for omniscience ca-
pacity of X and Y by a neutral observer Z, denoted by T(X; Y||Z), is the
infimum of all real numbers R ≥ 0 such that for every ε > 0 and large enough N
there exists a deterministic protocol for Alice and Bob, who start with XN and YN ,
respectively, with communication C, such that R = H(C|ZN)/N, and, at the end
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of the protocol, Alice and Bob end up with random variables TA and TB, respectively,
satisfying

Pr[TA = TB] ≥ 1− ε

and
H(XNYN |ZNTA) ≤ εN.

Gohari and Anantharam proved the following connection between the deter-
ministic secret-key rate and the problem of communication for omniscience
by a neutral observer.

Theorem 4.46 ([13, Theorem 3]) We have

Sdet(X; Y||Z) ≤ H(XY|Z)− T(X; Y||Z)

for all finite distributions PXYZ.

Therefore, a way to prove that Sdet(X; Y||Z) = 0 is to alternatively prove that
T(X; Y||Z) = H(XY|Z). Note that a rate of H(XY|Z) can be easily achieved
by having Alice and Bob simply publish XN and YN , and set TA = TB =
XNYN . This alternative characterization of Sdet(X; Y||Z) has the advantage
of eliminating the secrecy constraint. By following the proof of [13, Theorem
2] with H(XY|Z) in place of the function ψ, we obtain the next lemma, which
yields a sufficient condition for T(X; Y||Z) = H(XY|Z) to hold.

Lemma 4.47 If for small enough ε > 0 and large enough N every protocol for
omniscience with communication C satisfies

H(TA|ZNC) < N · f (N, ε),

or, equivalently,
H(XNYN |ZNC) < N · f (N, ε),

where f (N, ε)→ 0 whenever N → ∞ and ε→ 0, then T(X; Y||Z) = H(XY|Z).

Intuitively, Lemma 4.47 states that in order to verify that T(X; Y||Z) =
H(XY|Z), and hence that Sdet(X; Y||Z) = 0, it suffices to prove that the
communication between Alice and Bob in any successful protocol for omni-
science is already enough for Eve to reconstruct most of XNYN with high
probability.

Recall that binarizations (Definition 4.27) are thought to be a potentially vi-
able way of proving the existence of bound information, mostly due to the
fact that they eliminate the need to consider the communication of proto-
cols for secret-key agreement. Interestingly, binarizations for deterministic
protocols have a nice, simpler structure.
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Definition 4.48 Recall the definition of binarization (Definition 4.27). A binariza-
tion is said to be deterministic if XN (resp. YN) completely determines X (resp.
Y). Moreover, a binarization is said to be semi-deterministic if XN (resp. YN)
completely determines X (resp. Y) when conditioned on X 6= ⊥ (resp. Y 6= ⊥).

The next lemma is obtained by following the proof of [12, Proposition 5]
with our restricted types of protocols.

Lemma 4.49 It holds that Sdet(X; Y||Z) > 0 if and only if there exists a determin-
istic binarization for PXYZ. Furthermore, SPD(X; Y||Z) > 0 holds if and only if
there exists a semi-deterministic binarization for PXYZ.

It follows that, for Sdet, one may replace the channels PX|XN and PY|YN by
deterministic functions of XN and YN , respectively. Therefore, the prob-
lem of proving that the deterministic secret-key rate is positive is reduced
to a problem which is almost purely combinatorial. Another advantage of
studying deterministic binarizations is that this equivalence between bina-
rizations and the secret-key rate holds at the most general level, which is
not true for the other techniques. Therefore, techniques used to show the
non-existence of deterministic binarizations can potentially pave the way for
the more general case. It is also interesting to note that the S, SPD, Sdet hier-
archy of secret-key rate definitions implies a natural hierarchy of notions of
binarizations.

Recall that Lemma 4.40 states that the techniques of [30] cannot be applied
to unambiguous distributions where X and Y are binary. We now present a
class of distributions PXYZ, where X and Y are binary, such that S(X; Y||Z) >
0 always holds, but for which it is plausible that Sdet(X; Y||Z) = 0. These
distributions are obtained by restricting the range of X and Y of the distri-
bution in [12, Example 3]. The precise definition can be found in Table 4.4.

X
0 1

Y 0 2 [0] α [2]
1 5− α [1] 2 [0]

Table 4.4: Class of candidate unambiguous distributions for a separation between Sdet and
S when X and Y are binary, obtained by restricting the range of X and Y in the class of
distributions of Example 3 in [12]. We consider α ∈ [0, 1). Note that each entry in the table
must be normalized by 9. If the entry in row i, column j is p [k], then this means that Pr[X =
j, Y = i, Z = k] = p.

It is clear that the class of distributions defined in Table 4.4 is unambiguous.
Furthermore, it can be shown that, for α ∈ [0, 1), it holds that S(X; Y||Z) > 0.
The secret-key agreement strategy in this case is the following: Alice and
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Bob transform each realization of X and Y through appropriate channels
PX|X and PY|Y, and then run an advantage distillation protocol on the out-
puts of the channels, in order to obtain a positive secret-key rate. Note
that, since the strategy involves sending X and Y through channels, it re-
quires local randomness, and therefore it is not a deterministic protocol. For
α ≥ 1, the reasoning in the proof of Theorem 4.24 can be used to prove that
I(X; Y ↓ Z) = 0. We put forth the following conjecture.

Conjecture 4.50 For α < 1, the class of distributions defined in Table 4.4 satisfies
Sdet(X; Y||Z) = 0.

We will focus on the case where α = 0, as it entails a separation between S
and Sdet for distributions where all of X, Y, and Z are binary random vari-
ables. We provide an informal argument for why we believe that T(X; Y||Z) =
H(XY|Z) holds for this distribution. Given ZN , Eve knows the positions
where X = Y and X 6= Y. Furthermore, if X 6= Y, then she knows that
(X, Y) = (1, 0). However, for positions such that X = Y, she cannot predict
whether (X, Y) = (0, 0) or (X, Y) = (1, 1), since both cases are equally likely.
Therefore, in a communication for omniscience protocol, TA must contain
information about the positions of most entries satisfying (X, Y) = (0, 0) (at
least relative to the entries where (X, Y) = (1, 1)), or vice-versa. Suppose we
have a protocol where TA contains information about the location of most
of the (0, 0)-entries. Clearly, Alice can create TA without communicating
with Bob, since X = 0 implies Y = 0. Nevertheless, it must be the case that
TA and TB agree with high probability. For most realizations XNYN , Bob
cannot predict the relative location of the (0, 0)-entries, although he knows
the positions of the (1, 1)-entries. Therefore, in order for TA and TB to agree
with high probability, the communication C between Alice and Bob must
contain, in some way, most positions of the (0, 0)-entries. Ideally, ZN and C
would then jointly determine most of XNYN , and so the result would be a
consequence of Lemma 4.47.

We believe that attempting to answer Conjecture 4.50, either through the
problem of communication for omniscience or through deterministic bina-
rizations, will give rise to interesting techniques and concepts which might
pave the way to a negative answer to the positivity conjecture.

Lastly, we note that Theorem 4.39 provides yet more evidence that the dis-
tribution studied in Section 4.3 has bound information. Clearly, the distri-
bution in question is unambiguous. We can compute the trace over Eve’s
environment ρXY of its associated quantum state and its partial transpose
ρ>B

XY, and check that the only eigenvalue of ρ>B
XY that can be negative is

λ =
8a−

√
2

8(8a + 1)
,
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which is non-negative whenever a ≥ 1
4
√

2
. We have the following theo-

rem, which complements the results obtained about this distribution in Sec-
tion 4.3.

Theorem 4.51 The candidate for bound information PXYZ studied in Section 4.3
satisfies SPD(X; Y||Z) = 0 for a ≥ 1

4
√

2
.
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