
& 4

Codes and Lattices in Cryptography Mini-Course FCT-UNL, Spring 2023

Notes 3 & 4: Hardness of SIS, LWE, and lattice problems
Lecturer: João Ribeiro

Introduction

In the previous lecture we constructed cryptographic objects whose security is based on the hardness
of solving the LWE and SIS problems.

In this lecture we first relate the hardness of solving these problems on average to the worst-case
hardness of finding short vectors in a given (point) lattice. Then, we discuss the hardness of some
versions of this lattice problem. Finding short vectors in a lattice is conjectured to be hard for
quantum computers, with the best quantum algorithms matching the best classical algorithms
modulo generic quantum speedups. This makes LWE and SIS a popular basis for post-quantum
cryptography.

3.1 Basics of lattices

Before we discuss the hardness of the LWE and SIS problems, we introduce lattices.

Definition 3.1 (Lattice) We say that a set L ⊆ Rn is a lattice if there exist vectors v1, v2, . . . , vm ∈
Rn such that

L =
{

m∑
i=1

zivi : z1, . . . , zm ∈ Z
}

.

In words, L is a lattice if it consists of integer linear combinations of a collection of vectors. To
each lattice L we may associate a (non-unique) basis B ∈ Rn×m and write L as the integer column
span of B, i.e.,

L = L(B) = {Bz : z ∈ Zm}.

Given a lattice L, a parameter of interest is the ℓp-norm of its shortest nonzero vector, a quantity
which we denote by

λ
(p)
1 (L) = min

v∈L\{0}
∥v∥p,

where ∥v∥p = (∑n
i=1 |vi|p)1/p for p ≥ 1. When p = 2, which is the setting we will focus on throughout

this lecture, we abbreviate λ
(2)
1 (L) = λ1(L).

3-1



Notes 3 & 4: Hardness of SIS, LWE, and lattice problems 3-2

3.1.1 Fundamental lattice problems

We also introduce two important computational problems on lattices. The first problem is related
to determining the distance between the lattice and a target vector t.

Definition 3.2 (Closest Vector Problem) The γ-approximate Closest Vector Problem (denoted
γ-CVP) is the decisional promise problem defined as follows. On input a generator matrix B ∈ Zm×n,
a target t ∈ Zm, and a distance parameter k ∈ Z+, the goal is to decide between the following two
cases when one is guaranteed to hold:

• (YES) dist(L(B), t) ≤ k,

• (NO) dist(L(B), αt) > γk for any α ∈ Z \ {0}.

The second problem is related to determining the length of the shortest lattice vector.

Definition 3.3 (Shortest Vector Problem) The γ-approximate Shortest Vector Problem (de-
noted γ-SVP) is the decisional promise problem defined as follows. On input a generator matrix
B ∈ Zm×n and a distance parameter k ∈ Z+, the goal is to decide between the following two cases
when one is guaranteed to hold:

• (YES) λ1(L(B)) ≤ k,

• (NO) λ1(L(B)) > γk.

Note that SVP is a special case of CVP with target vector t = 0. Therefore, solving γ-CVP is at
least as hard as solving γ-SVP. Moreover, γ-CVP and γ-SVP become easier as the approximation
factor γ increases (and make no sense when γ < 1).

3.2 Worst-case to average-case reductions

Like most of the computational problems underlying the security of cryptographic protocols, the
LWE and SIS problems are average-case problems. In both cases, the adversary receives as input a
random instance. For example, in the SIS case they receive a uniformly random matrix A← Zn×m

q .
Therefore, to “break” SIS, it suffices to design an algorithm that is able to find a short nonzero
vector z ∈ ker(A) for a small fraction of matrices A.

In contrast, complexity theory, which studies the hardness of computational problems, focuses mostly
on worst-case problems. Examples of worst-case problems includes the γ-CVP and γ-SVP problems
defined above. In this case, the goal is to design an algorithm that solves every instance of the
problem with good probability. The complexity of worst-case problems is much better understood
than that of average-case problems. Therefore, a natural approach towards understanding the
complexity of a given average-case problem is to come up with an efficient reduction from a well-
studied worst-case problem, transforming every instance of the worst-case problem into an average



Notes 3 & 4: Hardness of SIS, LWE, and lattice problems 3-3

instance of the average-case problem. If such a reduction exists, then we know that solving the
given average-case problem is at least as hard as the worst-case problem, and hardness results that
apply to the worst-case problem also apply to the average-case problem.

For a long time, an important open problem in cryptography was to base the security of a
cryptographic protocol on the worst-case hardness of a well-studied computational problem. This
was finally resolved by already mentioned work of Ajtai [Ajt04], who constructed one-way functions
based on the hardness of the SIS problem and also proved a version of the following result connecting
the average-case hardness of SIS to the worst-case hardness of γ-SVP.

Theorem 3.1 ([Ajt04] and follow-up work, informal, as stated in [Pei15]) For any m =
poly(n), any β > 0, and any sufficiently large q ≥ β · poly(n), solving SISn,m,q,β is at least as hard
as solving γ-SVP on worst-case n-dimensional lattices with high probability for some approximation
factor γ = β · poly(n).

Regev [Reg09] showed a similar connection between average-case Decision-LWE and worst-case
γ-SVP. More precisely, Regev holds in the quantum setting – if we can solve Decision-LWE efficiently,
then there is an efficient quantum algorithm for solving γ-SVP. This result was later shown to hold
in the classical setting as well by Peikert [Pei09]. We state this version below.

Theorem 3.2 ([Reg09, Pei09], informal, as stated in [Pei15]) For any m = poly(n), any
q ≤ 2poly(n), and any discretized gaussian distribution χ with variance αq ≥ 2

√
n, solving the

Decision-LWEn,m,q,χ problem is at least as hard as solving γ-SVP on worst-case n-dimensional
lattices with high probability for some approximation factor γ ≈ n/α.

Given the above connections between SIS and LWE and γ-SVP, we would like to have some
understanding of the worst-case hardness of the latter problem. The remainder of these notes will
focus on this.

3.3 Hardness of lattice problems

Both the γ-CVP and γ-SVP problems described above are known to be difficult to solve under
standard complexity-theoretic assumptions for even large approximation factors γ (although not as
large as those needed for Theorems 3.1 and 3.2).

Perhaps the most well-known notion of computational hardness is NP-hardness. We discuss this
notion informally. A problem Π is NP-hard if it is at least as hard as any problem in the complexity
class NP, in the sense that if any problem in this class is shown to be hard to solve by polynomial-
time algorithms, then so is Π. This corresponds to the major (and widely believed) conjecture in
complexity theory that P ̸= NP.

The standard way of showing that a new problem Π is NP-hard is to select another problem Π′

which is already known to be NP-hard and then design a polynomial-time reduction from Π′ to Π.
A reduction from Π′ to Π is an algorithm that takes as input an instance of Π′ and outputs an



Notes 3 & 4: Hardness of SIS, LWE, and lattice problems 3-4

instance of Π with the property that YES (resp. NO) instances of Π′ are always mapped to YES
(resp. NO) instances of Π.

Sometimes, as will be the case later on in these notes, these reductions use randomness and only
guarantee that YES/NO instances of Π′ are mapped to YES/NO instances of Π with high probability.
This corresponds to the notion of NP-hardness under randomized reductions. Establishing such a
reduction from Π′ to Π implies that if there is a PPT algorithm that solves Π with high probability,
then there is also a PPT algorithm that solves Π′, which is NP-hard, with high probability. We
believe that the latter cannot happen.1 We refer the interested reader to [AB09] for a much more
extensive and careful discussion of these concepts.

The NP-hardness of γ-CVP for arbitrary constant approximation factor γ follows without much
effort via a reduction from the Exact Set Cover problem, as discussed in [ABSS97]. With more
effort it is possible to extend NP-hardness of γ-CVP to much larger approximation factors γ, as
captured in the following result due to Dinur, Kindler, Raz, and Safra [DKRS03].

Theorem 3.3 γ-CVP is NP-hard for approximation factor γ = nc/ log log n for some constant c > 0.

We skip the proof of Theorem 3.3 and use it to show the following hardness result for γ-SVP.

Theorem 3.4 γ-SVP is NP-hard for any approximation factor γ ∈ [1,
√

2) (under randomized
reductions).

Theorem 3.4 implies that there is no efficient algorithm for solving γ-SVP with γ <
√

2 provided
that P ̸= NP. The approximation factor in the hardness statement of Theorem 3.4 can, for example,
be improved to an arbitrarily large constant γ under the same complexity-theoretic assumption,
or to 2(log n)1−ε for any small constant ε > 0 if we upgrade the underlying assumption P ̸= NP to
stronger, but still sensible, complexity-theoretic assumptions [HR12].

The problem of establishing the NP-hardness of γ-SVP has a long history. Van Emde Boas [vEB81]
first showed NP-hardness of the (exact) SVP problem in the ℓ∞ norm and conjectured that SVP in
the ℓ2 norm is NP-hard. This remained open until work of Ajtai [Ajt98], and a line of work has
since then obtained significantly stronger hardness results for γ-SVP (see [Ben23] for an excellent
account of this progress). We prove Theorem 3.4 by mixing elegant arguments of Khot [Kho05] and
Bennett and Peikert [BP22].

A first attempt. In order to prove Theorem 3.4, we must describe a polynomial-time algorithm
that takes as input a γ-CVP instance (B, t, k) with B ∈ Zn×m, t ∈ Zn, and k ∈ Z+, and outputs a
γ′-SVP instance (B′, k′), for an appropriate γ′, such that (B, t, k) is a YES instance of γ-CVP if
and only if (B′, k′) is a YES instance of γ′-SVP.

A natural first approach is to consider the augmented basis B′ = [B | −t] and k′ = k. Vectors
in L(B′) are of the form Bz − βt for some z ∈ Zn and integer β. If (B, t, k) is a YES instance of
γ-CVP, then (B′, k′) is also a YES instance of γ′-SVP. In fact, if there is v = Bz ∈ L(B) such that
∥v − t∥2 ≤ k, then v′ = v − t ∈ L(B′), and so λ1(L(B′)) ≤ ∥v′∥2 ≤ k.

1In complexity-theoretic language, this corresponds to the widely believed conjecture that BPP ̸= NP.



Notes 3 & 4: Hardness of SIS, LWE, and lattice problems 3-5

Unfortunately, we run into issues when (B, t, k) is a NO instance of γ-CVP. In this case we have
that ∥v − βt∥2 > γk for all v ∈ L(B) and all β ∈ Z \ {0}. Consequently, vectors v′ ∈ L(B′) of the
form v − βt for v ∈ L(B) and β ̸= 0 have large norm. However, we have no guarantees when β = 0,
as it could happen that L(B) has short vectors, i.e., λ1(L(B))≪ γk. Therefore, (B′, k′) may not
be a NO instance of γ′-SVP. We need a different approach.

An alternative approach. Khot [Kho05] gets around the problem we mentioned above via an
alternative two-step approach. We begin by considering the “intermediate” basis

Bint =

 B 0n×m′ −t
0n′×m A −s

0m 0m′ 1

 ,

where m′, n′ = poly(n) and the basis-target vector pair (A, s) satisfies some special properties.

First, there should be many lattice vectors w ∈ L(A) close to s. This ensures that if (B, t, k) is a
YES instance of γ-CVP, then Lint = L(Bint) contains many short vectors (call this quantity Ngood).
On the other hand, λ1(L(A)) should be large. This guarantees that if (B, t, k) is a NO instance of
γ-CVP, then the short vectors of Lint are of the form (v, 0n′

, 0) with v a short vector of L(B). Let
Nbad denote the number of such vectors. If we set parameters correctly, then we can ensure that
Ngood ≫ Nbad.

Of course, we are still not done, because there may be several short vectors in Lint when (B, t, k) is
a NO instance of γ-CVP (at most Nbad). To get our final SVP instance, we randomly sparsify Lint,
intuitively keeping each lattice vector v ∈ Lint with probability 1/ρ with Nbad ≪ ρ≪ Ngood (care
must be taken to ensure the lattice structure is preserved). With high probability, all Nbad short
vectors are removed in the NO case, but at least one short vector survives in the YES case.

The object (A, s) we need to carry this argument through is a locally dense lattice. We discuss this
approach more carefully below.

3.3.1 Locally dense lattices

We begin by defining locally dense lattices formally.

Definition 3.4 (Locally dense lattice) Fix a real number α ∈ (0, 1) and positive integers d, N, m, n.
An (α, ℓ, N, n, m)-locally dense lattice is specified by a basis A ∈ Zn×m and a target vector s ∈ Zn

with the following properties:

• (Large minimum distance): λ1(L(A)) ≥ ℓ.

• (Many lattice vectors close to s): |{w ∈ L(A) : ∥w − s∥2 ≤ αℓ}| ≥ N .

3.3.1.1 Locally dense lattices from error-correcting codes

We construct locally dense lattices with appropriate parameters via a connection to linear codes.



Notes 3 & 4: Hardness of SIS, LWE, and lattice problems 3-6

Definition 3.5 (Linear code) An [n, r, d]q-code C is a vector subspace of Fn
q of dimension r which

also satisfies
min

c∈C\{0}
∥c∥0 ≥ d,

where ∥c∥0 = |{i : ci ̸= 0}| is the 0-norm (or Hamming weight) of c. We call d the minimum
distance of C.2

We may represent C as the column span of a generator matrix G ∈ Fn×r
q , i.e., we can write

C = C(G) = {Gz : z ∈ Fr
q}.

Reed-Solomon codes are some of the most versatile linear codes. They offer an optimal tradeoff
between dimension and minimum distance, but require alphabet size q ≥ n.

Definition 3.6 (Reed-Solomon codes) Fix a prime power q. The length-q Reed-Solomon code
with codimension h, denoted by RSq,h, is defined as

RSq,h = {(f(η))η∈Fq : f ∈ Fq[x], deg f < q − h}.

In words, a Reed-Solomon code consists of the evaluation vectors of all polynomials over Fq of
bounded degree.3 The following lemma captures basic properties of Reed-Solomon codes.

Lemma 3.1 RSq,h is a [q, q − h, d]q-code with minimum distance d = h + 1.

Proof: We discuss the minimum distance only. To see that d = h + 1, note that if some polynomial
f ∈ Fq[x] of degree at most q − h− 1 satisfies f(η) = 0 for at least q − h choices of η ∈ Fq, then f
must be the zero polynomial.

The Singleton bound states that any [n, r, d]q-code must have d ≤ n − r + 1. Therefore, Reed-
Solomon codes have optimal minimum distance for any given length q and dimension r – codes
with this property are called Maximum Distance Separable (MDS). We will see further applications
of this property to cryptography later on in this mini-course. Also importantly, note that the
generator matrix of the Reed-Solomon code RSq,h can be constructed in time polynomial in q (it is
a Vandermonde matrix). For much more about Reed-Solomon codes and coding theory in general,
see the excellent book of Guruswami, Rudra, and Sudan [GRS22].

The following construction of locally dense lattices based on Reed-Solomon codes is due to Bennett
and Peikert [BP22]. Fix a prime q, codimension h, and a real number α ∈ (0, 1).

• Take A to be the basis of the lattice

L = RSq,h + qZq = {w ∈ Zq : w (mod q) ∈ RSq,h}.
2If C has minimum distance at least d, then ∥c − c′∥0 ≥ d for any two distinct codewords c, c′ ∈ C. This captures

worst-case error-correction properties of C.
3Sometimes it is useful to restrict the evaluation set to be a particular subset of Fq.



Notes 3 & 4: Hardness of SIS, LWE, and lattice problems 3-7

• Sample the target s ∈ {0, 1}q uniformly at random from {v ∈ {0, 1}q : ∥v∥0 ≤ α2 · 2h}.

The following two lemmas capture the properties of (A, s) as a locally dense lattice. The first result
lower bounds the minimum distance of L(A).

Lemma 3.2 When h ≤ q/2, the lattice L(A) satisfies λ1(L(A)) ≥
√

2h =
√

2(d− 1).

It is instructive to compare Lemma 3.2 with the minimum distance of the Reed-Solomon code RSq,h,
which satisfies d = h + 1. The latter easily implies the weaker result that

λ1(L(A)) ≥
√

d =
√

h + 1.

However, for our application it is crucial that λ1(L(A)) is significantly larger than this naive bound.

The second lemma states that our sampling process for the target s successfully chooses with high
probability a target with many close lattice vectors.

Lemma 3.3 Fix α ∈ (0, 1). Then, with probability at least 0.99 the choice of (A, s) above satisfies∣∣∣{w ∈ L(A) : ∥w − s∥2 ≤ α
√

2h
}∣∣∣ ≥ 1

100

(
q

α2 · 2h

)
q−h.

Proof: Call a coset4 V of L(A) bad if

|V ∩ Bq(α2 · 2h)| < 1
100

(
q

α2 · 2h

)
· q−h.

We show that s lands on a bad coset with probability at most 1/100. In fact, we have that

Pr[s lands on a bad coset] =
∑

V :V is a bad coset

|V ∩ Bq(α2 · 2h)|
|Bq(α2 · 2h)|

<
∑

V :V is a bad coset

1
100qh

≤ 1
100 .

The first inequalities holds by the definition of bad coset, and the final inequality uses the fact that
there are at most qh cosets.

Combining Lemmas 3.2 and 3.3 immediately yields the following locally dense lattice construction.

Corollary 3.1 There exists a PPT algorithm which on input a prime q, a positive integer h ≤ q/2,
and a real number α ∈ (0, 1) outputs with probability at least 0.99 an (α, ℓ, N, q, m′)-locally dense
lattice (A, s) with

ℓ =
√

2h, N = 1
100

(
q

α2 · 2h

)
q−h, and m′ = poly(q).

Remark 3.1 This way of turning linear codes into lattices is a version of Construction A. For many
more connections between lattices and codes, see the great book of Conway and Sloane [CS13].

4A coset of a lattice L is any set of the form x + L for some vector x.



Notes 3 & 4: Hardness of SIS, LWE, and lattice problems 3-8

3.3.2 An intermediate lattice construction

Suppose that we are given a γ-CVP instance (B, t, k) with B ∈ Zn×m, t ∈ Zn, and k ∈ Z+. Consider
the “intermediate lattice” Lint to be the lattice generated by the basis

Bint =

 B 0n×m′ −t
0n′×m A −s

0m 0m′ 1

 ∈ Z(n+n′+1)×(m+m′+1) ,

where (A, s) is the (α, ℓ =
√

2h, N, q, m′)-locally dense lattice described in Corollary 3.1 with

α ∈
( 1√

2
, 1
)

, h =
⌈

1 + (γk)2

2

⌉
,

and q the smallest prime larger than 1010(2n(1 + γk))
10

2α2−1 = poly(n).5 The parameters are chosen
in this way to guarantee that λ1(L(A)) ≥ ℓ =

√
2h > γk (since h ≤ q/2), and that

N = 1
100

(
q

α2 · 2h

)
q−h ≥ 105(2n(1 + γk))(γk)2

.

We will use these properties in our reduction. The bottom row guarantees that Bint is full-rank
whenever A and B are full-rank.

Lemma 3.4 Fix γ > 1. Consider any γ′ such that6

1 ≤ γ′ ≤ γ√
3 + (αγ)2 .

Then, the following two properties hold:

• If (B, t, k) is a NO instance of γ-CVP, then there are at most

Nbad = (2n(1 + γk))(γk)2

vectors v ∈ L(Bint) such that ∥v∥2 ≤ γ′k′.

• If (B, t, k) is a YES instance of γ-CVP, then there are at least

Ngood = N ≥ 105(2n(1 + γk))(γk)2 = 105Nbad

vectors v ∈ L(Bint) such that ∥v∥2 ≤ k′ = γk/γ′.
5By Bertrand’s postulate, q = poly(n), and can be found in time poly(n) as well.
6As we take γ → ∞, the upper bound on γ′ approaches 1/α from below. Since we can take α to be arbitrarily

close to
√

2, we may set γ′ arbitrarily close to
√

2 provided that γ is chosen to be sufficiently large.



Notes 3 & 4: Hardness of SIS, LWE, and lattice problems 3-9

Proof: Choose γ′ as above and recall that k′ = γk/γ′. We proceed by cases.

If (B, t, k) is a NO instance of γ-CVP, then for every x ∈ Zm and β ∈ Z \ {0} it holds that

∥Bx− βt∥2 > γk = γ′k′. (3.1)

Consider an arbitrary vector z = (x, y, β) ∈ Zm+m′+1. We wish to upper bound the number of
bad lattice vectors, i.e., vectors Bintz such that ∥Bintz∥2 ≤ γk. Since ∥Bintz∥2 ≥ ∥Bx − βt∥2
and recalling Equation (3.1), z must have β = 0. In turn, this implies that y = 0m′ , since then
∥Bintz∥2 ≥ ∥Ay∥2 ≥ λ1(L(A)) > γk. We conclude that z must be of the form z = (x, 0m′

, 0) for
some x ∈ Zm, and so the associated bad lattice vectors v in Lint are of the form v = (Bx, 0n′

, 0) for
some x ∈ Zm. Therefore, we can bound the number of such vectors, Nbad, by the number of integer
vectors in Zn with ℓ2 norm at most γk, and so

Nbad ≤ (1 + 2γk)(γk)2
(

n

(γk)2

)
≤ (2n(1 + γk))(γk)2

,

where we have used the fact that
(a

b

)
≤ ab.

On the other hand, if (B, t, k) is a YES instance of γ-CVP, then there exists x ∈ Zm such that
∥Bx− t∥2 ≤ k. For each y ∈ Zm′ such that ∥Ay− s∥2 ≤ αℓ, consider the vector zy = (x, y, 1). Then,
our choice of parameters ensures that

∥Bintzy∥22 ≤ ∥Bx− t∥22 + ∥Ay − s∥22 + 1 ≤ k2 + (αℓ)2 + 1 ≤ (γk/γ′)2,

and so ∥Bintzy∥2 ≤ γk/γ′ = k′. It now suffices to observe that there are at least Ngood = N vectors
u = Ay such that ∥u− s∥2 ≤ αℓ, and hence at least Ngood good lattice vectors Bintzy.

3.3.3 Obtaining the final SVP instance

According to Lemma 3.4, our intermediate lattice Lint has (with high probability) the property
that in the YES case it has at least Ngood short vectors, and in the NO case it has at most Nbad
short vectors. Moreover, our choice of parameters ensures that Ngood ≥ 105Nbad. We would like to
transform Lint into a final sublattice Lfinal in a way that at least one short vector of Lint is preserved
in the YES case, but all short vectors are removed in the NO case. This would ensure that Lfinal is
an appropriate instance of γ′-SVP in each case.

We accomplish this by “randomly sparsifying” the intermediate lattice Lint, so that the properties
mentioned above are satisfied with high probability. This is done by adding an appropriate random
constraint to Lint. More precisely, let ρ be the smallest prime larger than 100Nbad. Sample a vector
w ∈ Zn+n′ by sampling each entry independently and uniformly at random from {0, . . . , ρ − 1}.
Then, we define Bfinal to be the (integral) basis of the sublattice Lfinal = L(Bfinal) ⊆ Lint defined as

Lfinal = {v ∈ Lint : ⟨v, w⟩ = 0 (mod ρ)}.

Theorem 3.5 With probability at least 0.9 over the choice of random vector w above it holds that
if (B, t, k) is a YES (resp. NO) instance of γ-CVP, then (Bfinal, k′) is a YES (resp. NO) instance
of γ′-SVP.



Notes 3 & 4: Hardness of SIS, LWE, and lattice problems 3-10

Proof: Note that the probability that each nonzero vector v ∈ Lint is also in Lfinal is exactly 1/ρ.
Let Xv denote the indicator random variable of the event “v ∈ Lfinal”.

Suppose that (B, t, k) is a NO instance of γ-CVP. Then, Lemma 3.4 guarantees that with probability
0.99 there exist at most Nbad nonzero vectors v ∈ Lint such that ∥v∥2 ≤ γ′k′. By the union bound7,
the probability that Xv = 1 for at least one of these vectors is at most Nbad/ρ ≤ 0.01, where the
inequality follows from our choice of ρ. Combining both events, we conclude that (Bfinal, k′) is a
NO instance of γ′-SVP with probability at least 0.9.

Now, suppose that (B, t, k) is a YES instance of γ-CVP. Then, Lemma 3.4 guarantees that with
probability 0.99 there exist at least Ngood ≥ 105Nbad vectors v ∈ Lint such that ∥v∥2 ≤ k′. We claim
that the probability that Xv = 0 holds simultaneously for all such v is at most ρ/Ngood ≤ 0.01.
To see this, first note that any two good nonzero vectors v, v′ ∈ Lint are linearly independent over
R, and so Xv and Xv′ are independent random variables. Let X = ∑

good v Xv. Then, we have
that E[X] = Ngood/ρ by linearity of expectation and Var[X] = ∑

good v Var[Xv] by the pairwise
independence of the Xv’s, and so

Pr[X = 0] ≤ Pr[|X − E[X]| ≥ E[X]] ≤ Var[X]
E[X]2 =

ρ2∑
good v Var[Xv]

N2
good

≤ ρ2 ·Ngood/ρ

N2
good

= ρ/Ngood.

The second inequality is an application of Chebyshev’s inequality. Combining both events, we
conclude that (Bfinal, k′) is a YES instance of γ′-SVP with probability at least 0.9.

Amplifying the approximation factor. Our argument above establishes NP-hardness of γ-SVP
for approximation factor γ ≈

√
2. How can we obtain hardness for larger approximation factors? A

natural approach is to repeatedly tensor the final lattice, i.e., take L = L(B ⊗B), and hope that
the length of the shortest vector squares with each tensoring operation. Although this is not true
in general, it is known that Khot’s SVP instances (with some fairly minor departures from our
presentation here) do have this property [HR12].

Other ℓp-norms. Our argument above focused on the ℓ2 norm, but it actually works for every ℓp

norm. In more generality, several results about γ-SVP in the ℓ2 norm can be ported to arbitrary ℓp

norms through norm embeddings [RR06].

3.4 Notes and additional reading

The recent survey by Bennett [Ben23] on the complexity of SVP is an excellent source of known
results and open problems.

7The union bound states that Pr[E1 ∨ E2] ≤ Pr[E1] + Pr[E2] for any two events E1 and E2.



Notes 3 & 4: Hardness of SIS, LWE, and lattice problems 3-11

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[ABSS97] Sanjeev Arora, László Babai, Jacques Stern, and Z Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. Journal of Computer and
System Sciences, 54(2):317–331, 1997.

[Ajt98] Miklós Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In Thirtieth Annual ACM Symposium on the Theory of Computing,
STOC 1998, pages 10–19. ACM, 1998.

[Ajt04] Miklós Ajtai. Generating hard instances of lattice problems. Quaderni di Matematica,
3:1–32, 2004. Preliminary version in STOC 1996.

[Ben23] Huck Bennett. The complexity of the shortest vector problem. SIGACT News,
54(1):37–61, mar 2023.

[BP22] Huck Bennett and Chris Peikert. Hardness of the (approximate) shortest vector problem:
A simple proof via Reed-Solomon codes, 2022. https://arxiv.org/abs/2202.07736.

[CS13] John H. Conway and Neil J. A. Sloane. Sphere Packings, Lattices and Groups, volume
290. Springer Science & Business Media, 2013.

[DKRS03] Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within
almost-polynomial factors is np-hard. Comb., 23(2):205–243, 2003. Preliminary version
in FOCS 1998.

[GRS22] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential Coding The-
ory. 2022. Draft available at https://cse.buffalo.edu/faculty/atri/courses/
coding-theory/book.

[HR12] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to
within almost polynomial factors. Theory Comput., 8(1):513–531, 2012. Preliminary
version in STOC 2007.

[Kho05] Subhash Khot. Hardness of approximating the shortest vector problem in lattices. J.
ACM, 52(5):789–808, sep 2005. Preliminary version in FOCS 2004.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
Extended abstract. In Proceedings of the Forty-First Annual ACM Symposium on Theory
of Computing, STOC ’09, page 333–342, New York, NY, USA, 2009. Association for
Computing Machinery.

[Pei15] Chris Peikert. A decade of lattice cryptography. Cryptology ePrint Archive, Paper
2015/939, 2015. https://eprint.iacr.org/2015/939.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), sep 2009. Preliminary version in STOC 2005.

https://arxiv.org/abs/2202.07736
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book
https://eprint.iacr.org/2015/939


Notes 3 & 4: Hardness of SIS, LWE, and lattice problems 3-12

[RR06] Oded Regev and Ricky Rosen. Lattice problems and norm embeddings. In 38th Annual
ACM Symposium on Theory of Computing, STOC 2006, pages 447–456. ACM, 2006.

[vEB81] Peter van Emde Boas. Another NP-complete partition problem and the complexity
of computing short vectors in a lattice. Technical Report, 1981. Available at https:
//staff.fnwi.uva.nl/p.vanemdeboas/vectors/mi8104c.html.

https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/mi8104c.html
https://staff.fnwi.uva.nl/p.vanemdeboas/vectors/mi8104c.html

	Basics of lattices
	Fundamental lattice problems

	Worst-case to average-case reductions
	Hardness of lattice problems
	Locally dense lattices
	Locally dense lattices from error-correcting codes

	An intermediate lattice construction
	Obtaining the final SVP instance

	Notes and additional reading

