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Introduction

In this lecture we construct some basic cryptographic objects based on the (conjectured) hardness of
two simple but widely applicable computational problems, the Short Integer Solution (SIS) problem
and the Learning With Errors (LWE) problem. As we shall discuss in detail in the next lecture, the
conjectured hardness of these problems is implied by the hardness of a well-studied computational
problem on point lattices. It is believed that the latter problem is hard to solve by quantum
computers, making SIS and LWE popular building blocks for post-quantum cryptography.

The material covered here is mostly based on the excellent surveys of Peikert [Pei15] and Regev [Reg10].

2.1 The Short Integer Solution problem

The Short Integer Solution problem was first introduced in cryptography by Ajtai [Ajt04]. Roughly
speaking, it asks us to find a short integer vector in the kernel of a random q-ary matrix. More
precisely, we have the following definition.

Definition 2.1 (Short Integer Solution problem) The Short Integer Solution (SIS) problem
parameterized by positive integers n, m, q and a real number β > 0, denoted by SISn,m,q,β, corresponds
to the following search problem:

1. Sample a uniformly random matrix A ∈ Zn×m
q ;

2. Given A, find a nonzero integer vector z ∈ Zm such that Az = 0 (mod q) and ∥z∥2 ≤ β.

Some observations are in order. First, SIS is easy to solve via gaussian elimination if no upper bound
is placed on the norm of the solution. The claim is that it is hard to find such short solutions. Second,
we must at the very least take q > β for SIS to be (hopefully) hard, since otherwise z = (q, 0, . . . , 0)
is a valid short solution.

Note also that we are not guaranteed a solution to SIS for all possible choices of parameters. However,
the following theorem states that a solution is guaranteed to exist whenever m and β are chosen to
be appropriately large compared to n and q.

Theorem 2.1 If m > n log q and β >
√

n log q, then SISn,m,q,β has at least one solution.
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Proof: This follows by a simple pigeonhole argument. Fix a matrix A ∈ Zn×m
q . Without loss of

generality, we can take m to be the smallest integer strictly larger than n log q (we can extend any
solution z for this choice of m to larger m′ by appending 0’s to z). Since there are 2m vectors in
{0, 1}m and 2m > qn by our choice of m, there exist two distinct vectors z, z′ ∈ {0, 1}m such that
Az = Az′ (mod q). But then A(z − z′) = 0 (mod q), and so w = z − z′ is the desired solution with
∥w∥2 ≤

√
m ≤ β.

2.1.1 One-way functions from SIS

Ajtai [Ajt04] proposed a simple family of functions that is easily shown to be one-way based on the
hardness of solving SIS with appropriate parameters. Consider the function f : Zn×m

q × {0, 1}m →
Zn×m

q × Zn
q defined as

f(A, z) = (A, Az (mod q)). (2.1)

It is not hard to show that this family is one-way based on SIS.

Theorem 2.2 The family of functions defined in Equation (2.1) is one-way provided that SISn,m,q,β

with m = ⌈2n log q⌉ ≫ n log q and β =
√

m is hard for PPT adversaries.

Proof: Suppose that Adv is a PPT algorithm which when given (A, Az (mod q)) for A← Zn×m
q and

z ← {0, 1}m outputs z′ ∈ Zm such that Az = Az′ (mod q) with non-negligible probability p = p(n).

We can use Adv to solve SISn,m,q,β with non-negligible probability at least p/3 as follows: On input
A← Zn×m

q , sample z ← {0, 1}m and run Adv(A, Az (mod q)). Suppose that Adv outputs z′. Then,
it holds that

A(z − z′) = 0 (mod q),

and so w = z − z′ is a solution to SISn,m,q,β provided that w ̸= 0. The choice of m and β in the
theorem statement ensures that this will hold with probability at least 1/2.

In more detail, the choice of m versus n and q ensures that there are 2m ≥ q2n vectors z ∈ {0, 1}m,
but only qn possible values for Az (mod q). Call z ∈ {0, 1}m bad if the preimage of Az (mod q)
contains at most one vector from {0, 1}m. Note that there are at most qn such bad z’s. Therefore,
the probability that our uniform sample z ← {0, 1}m is bad is at most qn−2n = q−n = negl(n). If
our sampled z is not bad and Adv then outputs z′ such that Az′ = Az (mod q), we will have z ̸= z′

with probability at least 1/2, as desired. Therefore, the final success probability of our reduction
can be lower bounded by p/2− q−n = p/2− negl(n) ≥ p/3 for sufficiently large n.

Finally, we remark that for usual choices of the modulus q we can take m to be much closer to
n log q and this argument will still go through.

As mentioned in the previous lecture, such a one-way function is sufficient to construct several
useful cryptographic primitives, such as pseudorandom generators, IND-CCA-secure symmetric-key
encryption, message authentication codes, digital signatures, and commitment schemes.

Remark 2.1 The family of functions in Equation (2.1) is not only one-way but also collision-
resistant based on the hardness of SIS: Given a random matrix A, it is infeasible to find distinct
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z, z′ ∈ {0, 1}m such that Az = Az′ mod q. Such collision-resistant function families are broadly
useful in cryptography.

Parameters for SIS and more structured problems. As we shall discuss in more detail later
on, our current understanding of SISn,m,q,β requires us to set the modulus q to be polynomial in n.
This is so that we can be confident that the associated SIS instance is hard to solve. Ajtai’s original
argument [Ajt04] required that q = nc for a large constant c > 0, but this has since been improved
to the nearly-optimal q ≈

√
n through a series of works culminating in [MP13].

Protocols based on SIS usually suffer from large keys. This is mostly due to the fact that we need
to set m > n log q so that the associated SISn,n,m,β problem has a solution. As a result, we need
to store roughly n2 elements from Zq, leading to nearly quadratic keylength. Motivated by this,
researchers have studied other versions of SIS, such as the ring-SIS problem, where keys can be made
significantly shorter and computations can be performed much faster. However, the conjectured
hardness of these problems is based on less standard assumptions. For an in-depth discussion on
this topic, see Stephens-Davidowitz’s lecture notes [Ste18].

2.2 The Learning With Errors problem

The Learning With Errors (LWE) problem was introduced by Regev [Reg09] in a work that was
awarded the 2018 Gödel prize. At a high level, the LWE problem asks us to invert a (random)
system of linear equations corrupted by short errors. The following definition presents a more formal
description of the problem.

Definition 2.2 (Search Learning With Errors problem) The search Learning With Errors
(search-LWE) problem parameterized by positive integers n, m, q and an error distribution χ on Zq,
denoted by Search-LWEn,m,q,χ, corresponds to the following search problem:

1. Sample a uniformly random matrix A ∈ Zn×m
q , a uniformly random secret s ∈ Zm

q , and an
error vector e = (e1, . . . , en) with each ei sampled independently according to χ.

2. Given A and As + e (mod q), find s.

The above definition presents the search version of LWE, where we are tasked with finding the input
secret s. It is also useful to consider the natural decision version of this problem, where we wish to
distinguish As + e (mod q) from a uniformly random vector.

Definition 2.3 (Decision Learning With Errors problem) The decision Learning With Er-
rors (decision-LWE) problem parameterized by positive integers n, m, q and an error distribution
χ on Zq, denoted by Decision-LWEn,m,q,χ, corresponds to the following distinguishing game played
between an adversary and a challenger:

1. The challenger samples a uniformly random matrix A ∈ Zm×n
q , a uniformly random secret

s ∈ Zn
q , and an error vector e = (e1, . . . , em) with each ei sampled independently according to

χ.
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2. The challenger also samples a challenge bit b uniformly from {0, 1}. If b = 0, then the
challenger sends (A, As + e (mod q)) to the adversary. Otherwise, if b = 1 then the challenger
samples u← Zm

q and sends (A, u) to the adversary.

3. The adversary outputs b′ and wins if b′ = b.

Search-LWE is at least as hard as Decision-LWE (in fact, both problems have essentially equivalent
hardness), and both problems are easily solved via Gaussian elimination if there is no error (i.e.,
e = 0 with probability 1). Our claim is that (for appropriate parameters) these problems are hard to
solve when some small errors are introduced (again, according to an appropriate error distribution).

Usual parameters and error distribution for LWE. As was done for SIS, it is instructive
to discuss the usual parameter and error distribution regime for LWE. The modulus q is usually
taken to be polynomial in n. The error distribution is usually taken to be a mean-zero gaussian
distribution rounded to the nearest integer and then reduced modulo q (a so-called discrete gaussian)
with variance q/poly(n). One property that is often exploited in LWE-based cryptographic schemes
is that the error vector has norm ≪ q with high probability, and so can be reliably rounded-off in
crucial steps of the protocol.

Similarly to SIS, LWE-based protocols have large keys because we need to set m > n log q. This has
led researchers to consider more structured versions of LWE, such as the ring-LWE problem [SSTX09,
LPR10], which yield more efficient cryptographic protocols under less standard hardness assumptions.

We note also that LWE and ring-LWE are sometimes also studied with other error distributions,
such as binary errors sampled uniformly at random from {0, 1} [MP13].

2.2.1 Public-key encryption from LWE

The conjectured hardness of Decision-LWE can be used to construct, among many other “cryptomania”
primitives, public-key encryption schemes with post-quantum security.1 We will discuss Regev’s PKE
scheme [Reg09], which is secure provided that Decision-LWE (with an appropriate parameterization)
is hard to solve by PPT adversaries.

We proceed to describe the key generation, encryption, and decryption procedures of Regev’s PKE
scheme for single-bit messages. For this scheme to be correct (i.e., for us to be able to correctly
decrypt ciphertexts), we need to use an error distribution χ that generates short error vectors with
high probability. We discuss this in more detail below, and remark that usual instantiations of
Decision-LWEn,m,q,χ believed to be hard have this property. For the security proof we will additionally
require that m ≥ (n + 1) log q, which is also fine from a hardness perspective.

• Key generation: Sample a secret s ← Zn
q , a matrix A ← Zm×n

q , and an error vector
e = (e1, . . . , em) with each ei sampled independently according to an error distribution χ over

1Other high-profile applications of LWE include fully homomorphic encryption [BV11] and indistinguishability
obfuscation [JLS21].
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Zq. Let w = As + e (mod q) ∈ Zm
q . Then, we set the secret key sk and public key pk as

sk = s and pk = A′ = [A | w] ∈ Zm×(n+1)
q .

• Encryption: To encrypt a bit b ∈ {0, 1} using pk = A′, sample x ← {0, 1}m and compute
the ciphertext

c = Enc(b, pk) = xT A′ +
(

0n, b ·
⌈

q

2

⌋)
(mod q),

where ⌈z⌋ denotes the nearest integer to z with ties broken arbitrarily.

• Decryption: To decrypt c using the secret key sk = s, we first compute

c

[
s
−1

]
= xT (As− w)− b ·

⌈
q

2

⌋
(mod q)

= −xT e− b ·
⌈

q

2

⌋
(mod q).

Since x ∈ {0, 1}m, we have that
|xT e| ≤ ∥e∥1.

Therefore, if ∥e∥1 < q/4 then we can recover b by checking whether the computation above
yields a value closer to 0 or q/2.
For example, this property of the error vector is satisfied with high probability if we follow the
standard approach of taking χ to be a discrete gaussian with standard deviation q/poly(n). In
this case, the resulting standard deviation of e would be

√
m · q/poly(n)≪ q/4, which yields

the desired property.

Regev showed the following result.

Theorem 2.3 The PKE scheme defined above is computationally secure if Decision-LWEn,m,q,χ is
hard to solve by PPT adversaries and m ≥ (n + 1) log q.

Proof: Following [Pei15], we present an informal outline via a hybrid argument – a standard proof
technique in cryptography. Recall that the goal is to show that no PPT adversary Adv can win
the following distinguishing game except with probability at most 1/2 + negl(n) for some negligible
function negl:

1. The challenger samples keys (sk, pk)← Gen(1n) and a bit b← {0, 1}, and sends the public
key pk and the ciphertext c = Enc(b, pk) to the adversary Adv;

2. Adv outputs b′ ← Adv(1n, c, pk) and wins if b′ = b.

The first hybrid H0 corresponds exactly to this distinguishing game played the challenger and
Adv. The second hybrid H1 is the same game as H0 with the exception that the public key
pk = A′ ∈ Z(m+1)×n

q is now sampled uniformly at random from Z(m+1)×n
q and independently of sk.
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The final hybrid H2 is like H1 with the exception that the ciphertext c is also sampled uniformly at
random and independently of everything else.

Note that in H2 the adversary’s input is independent of the message bit b. Therefore, the winning
probability for any adversary in H2 is exactly 1/2. As a result, if we show that the “transcripts”
of H0 and H2 are indistinguishable to the eyes of any PPT algorithm, then this implies that no
PPT adversary Adv can win H0 with probability better than 1/2 + negl(n) (because otherwise the
winning event of Adv could be used to distinguish between H0 and H2). We argue this in steps,
first by showing that the transcripts of H0 and H1 are indistinguishable, and then that those of H1
and H2 are indistinguishable.

We now show that the transcripts of H0 and H1 are computationally indistinguishable, provided
that Decision-LWEn,m,q,χ is hard to solve by PPT adversaries. To do this, we describe how we
can transform a PPT algorithm D that correctly distinguishes between the transcripts of H0 and
H1 with probability at least 1/2 + f(n) for a non-negligible function f into a PPT algorithm D′

that correctly solves Decision-LWEn,m,q,χ with the same probability. Consider the following PPT
algorithm D′ for Decision-LWEn,m,q,χ which runs D as a subroutine. The algorithm D′ receives as
input a uniformly random matrix A← Zm×n

q and a vector w ∈ Zm
q . Recall that in the “real” case

we have that w = As + e (mod q) for a uniformly random s← Zn
q and a short error vector e, while

in the “ideal” case we have that w ← Zm
q independently of A. The algorithm D′ arranges (A, w)

into the augmented matrix
A′ = [A | w],

plays the PKE distinguishing game with A′ as the public key, and calls D on the resulting transcript.
Observe that if we are in the real case where w = As + e (mod q), then this game corresponds
exactly to H0, while if we are in the ideal case where w ← Zm

q , then the game corresponds exactly
to H1. Therefore, if D correctly guesses whether the transcript comes from H0 or H1, then D′

also correctly guesses whether it is in the real or ideal case, thus solving Decision-LWEn,m,q,χ. This
implies that H0 and H1 are computationally indistinguishable.

Finally, we claim that the transcripts of H1 and H2 are indistinguishable, even to computationally-
unbounded algorithms. The only difference between the two games lies in how the ciphertext is
computed. In H1 the ciphertext is computed as c = xT A′ + (0n, b ·

⌈ q
2
⌋
) with A′ ← Zm×(n+1)

q and
x ← {0, 1}m, while in H2 it is sampled uniformly at random from Zn

q . The desired claim follows
directly from the fact that the joint distribution

(A′, xT A′)

is very close to the uniform distribution over Zm×(n+1)
q × Zn+1

q in total variation distance whenever
m ≥ (n + 1) log q. This is equivalent to the statement that no computationally-unbounded algorithm
can distinguish between samples from these two distributions, and hence between transcripts of H1
and H2.

Remark 2.2 The fact that the joint distribution (A′, xT A′) is indistinguishable from the uniform
distribution over Zm×(n+1)

q ×Zn+1
q whenever m ≥ (n+1) log q, used in the proof of Theorem 2.3 above,

is a special case of the powerful Leftover Hash Lemma. For simplicity, we avoid presenting a formal
argument here. We will get to see a more careful treatment and further applications of the Leftover
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Hash Lemma later on in the broader context of randomness extraction for information-theoretic
cryptography.

2.3 Notes and additional reading

For an extensive discussion of real-world attacks on LWE and related problems, see [ACD+18,
ADH+19].
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