
Theory of Computing: Goals and Directions

Alfred V. Aho

Columbia University

David S. Johnson

AT & T

Richard M. Karp (Chair)

University of Washington

S. Rao Kosaraju

Johns Hopkins University

Catherine C. McGeoch

Amherst Colloge

Christos H. Papadimitriou

University of California at Berkeley

Pavel Pevzner

University of Southern California

March 15, 1996

Abstract

This report assesses the current goals and directions of the Theory of Computing (TOC) community

and suggests actions and initiatives to enhance the community's impact and productivity. The report

discusses the �eld from a global perspective, but its recommendations are targeted speci�cally for educa-

tion and research in the United States. Most of the recommendations relate to the following fundamental

point: In order for the Theory of Computing to prosper in the coming years, it is essential to strengthen

communication with the rest of computer science and with other disciplines, and to increase the impact

of theory on key application areas.

Section 1 traces the history of the �eld and de�nes the four main categories into which our recom-

mendations fall: building bridges between theory and applications, algorithm engineering, communication

and education. Section 2 gives a sampling of the notable past achievements in the Theory of Computing.

Section 3 discusses some opportunities for stimulating interactions between TOC and applied areas. Sec-

tion 4 proposes an applied research initiative, Information Access in a Globally Distributed Environment,

which identi�es an exciting current technological area that we believe presents challenging opportunities

for excellent theoretical work. Section 5 proposes a second applied research initiative, The Algorithmic

Tool Kit, that would exploit and extend the body of theoretical knowledge in the �eld of generic algo-

rithms and models of computation. Section 6 proposes a redirection of e�ort in graduate education with

two purposes in mind: to better prepare theoreticians to interact creatively with practitioners, and to

provide future practitioners with the background they will need to bene�t from this exchange. .

1 Introduction

Theory and theoreticians have played a major and brilliant rôle in the history of our �eld. In fact, two of

the pioneers of Theoretical Computer Science are also among the founders of Computer Science (CS): Alan

M. Turing and John von Neumann. The two decades after the death of these giants (roughly 1955 to 1975)

were the formative period for the �eld of Theory of Computing. During this period theoreticians developed

a set of basic concepts and methodologies that transcend application domains and set our science apart

from other applied and natural sciences. These fundamental contributions include automata- and language-

theoretic models, data structures and algorithms, methodologies for evaluating algorithm performance, the

theory of NP-completeness, logics of programs and correctness proofs, and methods of public-key cryptogra-

phy. During this period theoreticians also contributed crucially to some of the most celebrated engineering

triumphs of CS, especially in the areas of compilers, databases, and multitasking operating systems.

By the end of this formative period the �eld had discovered a realm of deep problems (especially those

relating to the P vs. NP question) of the kind that take decades to solve and bring to a young science

the aura of depth and respectability, and a sophisticated and powerful methodology was emerging, proudly

1

borrowing from logic and combinatorics. Also, commonality of methodology and objective brought social

cohesion: By 1975 theory conferences had already been running for about ten years (FOCS and STOC in

the U.S., ICALP in Europe).

During the next twenty years theoretical CS attracted to its ranks some of the brightest young scientists,

and celebrated some major achievements in fundamental research. The �eld branched out into a number of

promising new areas with real potential for practical exploitation. These areas include interactive proof sys-

tems; PAC learning; probabilistic, approximate and on-line algorithms; computational geometry; models and

algorithms for distributed and asynchronous computation; cryptography and secure protocols; probabilistically

checkable proofs; logics of knowledge; and quantum computing.

Despite these remarkable achievements, trouble is looming for the �eld of theoretical research in computer

science. The current professional climate is marked by saturation in the academic job market, shrinking

budgets for federal funding agencies, and a sense of disconnection from other areas of computer science. It

is time for a reassessment of the directions that theoretical computer science is taking.

This report grew out of an NSF-sponsored workshop, held on June 2, 1995 with the purpose of assessing

the current goals and directions of the Theory of Computing (TOC) community and suggesting actions and

initiatives to enhance the community's impact and productivity. The workshop was preceded by an open

meeting on the same topic at the 1995 ACM Symposium on Theory of Computing, at which a number of

position papers were presented. We discuss the history, current state, and future of theoretical research in

computer science from a global perspective, since the sense of community in theoretical computer science

transcends national boundaries. However, we recognize that the circumstances under which theoretical

computer scientists are trained and the patterns of activity in theoretical computer science research vary

greatly from country to country. For this reason our suggestions about graduate education and employment,

and our recommendations about areas of emphasis and funding directions, are targeted speci�cally for

research programs in the United States. The report is not directed to a single funding agency, but rather

to the entire computer science community and to all the U.S. agencies that participate in the funding of

theoretical computer science. We believe that the recommended changes are critical to the ability of the

United States to remain a leader in computer science education, research and technology development.

In undertaking this task the committee found it useful to identify three distinct (although heavily

interacting and overlapping) types of research activity within TOC.

1. The �eld of core theory studies computation as an abstract phenomenon, and explores the math-

ematical techniques that are (presently or potentially) useful in computer science. In recent years

research in core theory, supported mainly by the NSF Theory of Computing program, has established

solid foundations for cryptography, interactive computation, computational learning, parallel and dis-

tributed computation, randomized computation, on-line computation and reasoning about knowledge.

These notable and largely unexpected developments contribute greatly to the appeal and distinctive

avor of theoretical computer science. Core theory has achieved a remarkable unity, in which seemingly

unrelated topics are found to have surprising connections and to be amenable to investigation by com-

mon mathematical techniques. One example is the use of probabilistically checkable proofs to prove

that the approximate solution of certain optimization problems is NP-hard. A second is the variety

of interrelationships among cryptography, pseudorandom number generation, complexity theory and

computational learning theory. A third is the broad applicability of recurrent mathematical themes

such as rapidly mixing Markov chains, pairwise independent random variables, expander graphs, and

discrete Fourier analysis. Since core theory develops through unexpected innovations it is di�cult to

establish programmatic goals. Instead, each proposal should be evaluated in terms of its own inner

logic and potential for making a real di�erence. Because of shrinking funds and the need to develop

the more applied side of theory, proposals in this area will have to be held to a high standard.

2. The �eld of fundamental algorithms uses sophisticated mathematical techniques to develop so-

lutions to problems that transcend application domains. This area includes such central topics as

2

combinatorial algorithms, approximation algorithms, on-line algorithms, numerical algorithms, algo-

rithms for computational geometry, and data structures for search, graph operations, and point set

manipulation.

3. Finally, application-speci�c theory studies concrete computational phenomena arising in applica-

tion areas, and adapts models and techniques from the two categories above, or develops new formal

models and techniques for solving problems in these areas. The Human Genome Project is an exam-

ple of an application area that has stimulated many recent algorithmic developments. For another

example, there is a large community of theoreticians who develop models and algorithms tuned for

speci�c kinds of parallel machines. In general, however, this area of research has not
ourished to

the same extent as core theory and fundamental algorithms. In part this is due to a value structure

prevalent in the TOC community which places excessive weight on mathematical depth and elegance,

and attaches too little importance to genuine links between theory and concrete applications. The

neglect of application-speci�c theory by the TOC community is in large part responsible for the general

computer science community's failure to understand or appreciate contemporary theoretical research.

We hope that this report will stimulate members of the TOC community to recognize that it is often

intellectually as challenging for the theoretician to pursue signi�cant applications as to work on the

now classical core problems, and that the body of knowledge that the theory community has developed

is ripe for exploitation in application domains.

Most of our recommendations relate to the following fundamental point: In order for TOC to prosper

in the coming years, it is essential to strengthen our communication with the rest of computer

science and with other disciplines, and to increase our impact on key application areas. If we

do so then funding will
ow to TOC from a variety of sources, young theoretical computer scientists will

have good employment opportunities, our �eld will contribute to the revolutionary developments that are

surely coming in the �eld of computing, and we will draw intellectual stimulation from challenging problems

that demand solution. If instead we turn inward then our chances for adequate funding and employment

opportunities will be compromised, we will fail to take advantage of the intellectual stimulation that comes

from exposure to concrete problems, and the applications that need our help will not get it.

Although our primary emphasis is on outreach to related �elds, we also consider it essential to maintain a

strong activity in core theory and fundamental algorithms, since these are the areas that give TOC its unique

character, and in which the most dramatic new developments occur. There is little that any committee can

do to program new breakthroughs in core theory and fundamental algorithms. Such breakthroughs arise

from original ideas that could not have been anticipated. The best one can do is to select those proposals

that seem to have the best chance of leading to fundamental advances, and for this purpose we know of

no system better than the peer review system that NSF has traditionally used. The TOC community is

relatively free of factions and cliques, and has a high degree of consensus about the criteria for good research;

for these reasons, the peer review system has served this �eld well.

In the following paragraphs we state some broad recommendations for the future development of TOC.

These are followed in later sections by more speci�c recommendations of research directions at the applied

end of the TOC spectrum. These recommendations are intended not to infringe on the funds available to

support investigator-initiated theory research, but rather to stimulate additional funding for applied theory

from funding agencies and directorates concerned with speci�c application areas.

Our broad recommendations fall into four main categories: building bridges between theory and appli-

cations, algorithm engineering, communication and education.

Building bridges between theory an applications. There are a number of striking recent cases in

which the theory of computation has exerted a direct in
uence on applied �elds:

1. Algebraic algorithms for robot motion planning, originally studied from a complexity-theoretic point

of view, have in
uenced applied developments in robotics.

3

2. Close ties have been established between theoreticians working in computational learning theory and

the more applied machine learning community within arti�cial intelligence.

3. Theoretical computer scientists in industrial research laboratories are developing and implement-

ing protocols for secure communication over computer networks, based on fundamental complexity-

theoretic results in cryptography.

4. A new generation of e�cient large-scale linear programming codes has been developed, building on

theoretical analyses of interior-point methods for linear programming.

5. Theoretical ideas from coding theory have improved the error resilience of the transmission of multi-

media data over packet networks.

Many further examples could be drawn from such �elds as geometric modeling, relational databases, network

optimization and computational biology.

In each of these cases, the exploitation of theoretical results was far from trivial, and required a deep

understanding of both the underlying theory and the application domain. Such applied studies require

theoreticians to cope with the messiness of the real world, often at the expense of the elegance, mathematical

depth and universality that the TOC community prizes so much. Nevertheless, in order to maximize its

impact on the rest of computer science and on other �elds, the TOC community will have to encourage the

strenuous e�ort that is required to carry a theoretical idea through to the point where it actually begins

to have a practical impact. This is particularly important because, in the present atmosphere of shrinking

funding for basic research in computer science, most of the theoreticians we train will �nd that their best

opportunities for interesting and productive work lie in applied domains.

Algorithm engineering. Within theoretical computer science algorithms are usually studied within

highly simpli�ed models of computation and evaluated by metrics such as their asymptotic worst-case

running time or their competitive ratio. These metrics can be indicative of how algorithms are likely to

perform in practice, but they are not su�ciently accurate to predict actual performance. The situation

can be improved by using models that take into account more details of system architecture and factors

such as data movement and interprocessor communication, but even then considerable experimentation and

�ne-tuning is typically required to get the most out of a theoretical idea. E�orts must be made to ensure

that promising algorithms discovered by the theory community are implemented, tested and re�ned to the

point where they can be usefully applied in practice. This can only happen if the TOC community comes

to recognize algorithm engineering | the experimental testing and tuning of algorithms | as integral to

its mission.

Communication. We must explain to the rest of the CS community, to the broader scienti�c community,

and to the society as a whole our past accomplishments, our present endeavors, and our potential for

outstanding future contributions. Section 2 of this report lists some of the major accomplishments of the

theory community and gives examples of the kind of exposition that is wanted, but there is a need for a

continuing
ow of expository articles making developments in TOC accessible to a broad audience.

We can reach out to nonspecialists by including broadly accessible expository introductory sections in

our research papers. These should include realistic assessments of the applicability of our results, avoiding

false claims but making sure that real opportunities for applications are pointed out. Often a theoretical

paper will relate to an applied problem in a loose or metaphorical way, but will not contribute directly to

solving the applied problem; in such cases, excessive claims of applicability must be avoided.

The unique, universal, and ubiquitous themes of computer science can only be developed by theoreticians

who maintain strong communication ties with one another, and for this reason theoreticians often band

together in \theory groups" within their academic departments or research organizations. It is important

that such organizational structures should not insulate theoreticians from other computer scientists. Theory

researchers who commit themselves to a particular applied topic should be willing to step outside their theory

groups for a period of time or even establish a permanent dual a�liation.

4

Education. Graduate students narrowly trained in theoretical computer science will miss out on op-

portunities for intellectual growth and will have limited opportunities in the job market that is expected to

prevail for the foreseeable future. It is important that theoreticians develop an awareness of applications

and experimental research. For the health of the applied branches of computer science, it is equally impor-

tant that applied computer scientists receive a good exposure to the methods and results of the Theory of

Computing.

The remainder of the report
eshes out the picture developed in this Introduction and suggests a series of

actions consistent with the broad recommendations we have given. Section 2 gives a sampling of the notable

past achievements in the Theory of Computing. Section 3 proposes some opportunities for stimulating

interactions between TOC and applied areas and thus generating new sources of funding for theory research.

Section 4 proposes an applied research initiative, Information Access in a Globally Distributed Environment,

which identi�es an exciting current technological area that we believe presents challenging opportunities for

excellent theoretical work. Section 5 proposes a second applied research initiative, The Algorithmic Tool

Kit, that would exploit and extend the body of theoretical knowledge in the �eld of generic algorithms and

models of computation. Section 6 proposes a redirection of e�ort in graduate education with two purposes

in mind: to better prepare theoreticians to interact creatively with practitioners, and to provide future

practitioners with the background they will need to bene�t from this exchange.

2 Achievements of Theoretical Computer Science

Theoretical computer science has to its credit a number of achievements that deserve to be understood

by everyone concerned with computer science and computer applications, either because they have had a

substantial e�ect on an application area or because they provide important new ways of thinking about

computation. These include

� theory of parsing and compilation

� NP-completeness

� basic data structures

� advanced data structures

� algorithmic developments in computational geometry

� interior methods for linear and nonlinear programming

� fast text searching

� complexity theory of parallel computation

� theory of program veri�cation

� relational database theory

� public-key cryptography

� RSA and other cryptosystems

� interactive proofs

� zero-knowledge proofs

� probabilistically checkable proofs

� impossibility results from distributed computing theory

5

� logics of knowledge

� temporal logic

� computational learning theory

Many of these topics are not well understood outside the theory community, and there is a need for

expository articles that explain them to a broader audience, as well as overview articles for theoreticians

themselves. It is outside the scope of this report to provide the needed expositions, but we present a few

brief illustrative examples.

Interior Point Algorithms. One of the major developments in the last 20 years in the �eld of opti-

mization has been the emergence of interior point methods as serious practical competitors to the simplex

method for linear programming. The success of these methods can in large part be attributed to theoret-

ical concern with the asymptotic worst-case running time of algorithms. Klee and Minty, in 1972, showed

that the simplex method, although often very fast in practice, could in the worst case take exponential

time under most common pivoting rules. This gave rise to the important theoretical question of whether

Linear Programming was solvable in polynomial time, a question that practitioners considered to be only a

theoretical question, given the many reported successes of the simplex method. In 1979, Khachian discov-

ered the �rst polynomial time algorithm for Linear Programming, but although the algorithm's worst-case

running time was substantially better than that of simplex, its empirical performance was typically much

worse. Practitioners took this to be evidence of the irrelevance of worst-case analysis, but theorists took it

as motivation to look for better polynomial-time algorithms.

In 1984, Narendra Karmarkar devised such an algorithm, based on the old idea of seeking the optimal

solution through the interior of the polytope rather than via its surface. Equally important, Karmarkar

took the key step (still not common among theoreticians) of implementing the algorithm. In doing so, he

discovered that, like the simplex method, it typically ran much more quickly than its worst-case guarantee

indicated. His initial claims proved controversial, as other researchers could not at �rst duplicate his results.

The reason for this was that Karmarkar, coming from a computer science background, had implemented

the algorithm using modern data structure techniques (themselves a product of concern with asymptotic

performance), something that was not yet common in the mathematical programming community.

The ferment caused by Karmarkar's results and claims has been immensely bene�cial for the �eld of

mathematical programming. Not only are there now a variety of commercially available interior point codes

currently solving applied problems not amenable to other methods, but, faced with this competition, simplex

packages have also improved dramatically (in part by adapting modern data structures and programming

techniques themselves).

Relational Databases. Databases have grown to a ten billion dollar industry in which the United States

enjoys a commanding lead. Remarkably, this industry is centered around a clean mathematical idea, the

relational model proposed by Codd in 1970 | before that, databases were based on much more awkward

and ad hoc models. Although the inventor of the relational model did not come from the traditional theory

community, he did use the tools of theory for formulating and championing his model. The most striking

and compelling argument for the relational model was a theorem stating that two apparently very di�erent

approaches to asking queries in it | the algebraic and the logical query languages | are in fact equivalent.

The relational model was intentionally rigorous and open-ended theoretically. It has spawned a very active

theoretical research tradition which created a rich and useful theory of database design, as well as its

extensions to object-oriented, deductive, and novel media databases. The second technical pillar of the

database industry, e�cient access methods based on Bayer and McCreight's B-tree, draws from a long line

of theoretical research on balanced search trees, which culminated, with superb timing, also in 1970. The

story of relational databases teaches us that principled, rigorous theoretical research in an applied area is

most useful (and leads to more interesting theory) when done early in the development of the �eld.

6

NP-completeness. All scienti�c �elds have methodologies for attacking problems; but after several meth-

ods have been tried without success, scientists must face the uncomfortable possibility that they might have

missed a simple trick. In computer science we formulate and try to solve algorithmically scores of di�erent

computational problems and their innumerable special cases and variants; it is hard to visualize the frus-

tration and wasted energy that would prevail in our �eld today without NP-completeness. By establishing

that many well-known stubborn problems from di�erent disciplines are all computationally equivalent, and

in fact can be solved e�ciently if and only if P=NP, Karp, based on previous work by Cook, created an

extremely in
uential new research paradigm. Researchers in all areas of computer science today resort to

this evidence of impossibility whenever a computational problem resists their e�orts at e�cient solution;

this way, research e�ort is redirected to goals such as approximate algorithms, and heuristics are pursued

without guilt. What is more, NP-completeness has become a kind of \cultural ambassador" of Computer

Science to other �elds, as the concept is used as indirect evidence of complexity in extremely diverse con-

texts (a bibliographic search �nds that approximately 6,000 articles in conferences and journals every year,

in �elds ranging from political science to mathematical biology and power engineering, have \NP-complete"

among their keywords).

3 Bridges to Applications: Some Promising Directions

It is essential for the TOC community in the U.S. to maintain a strong presence in the core of theoretical

computer science. In addition, it is important to bring the work on fundamental algorithms into closer

contact with computational practice, and to develop a stronger presence in selected application-speci�c

areas.

In this section we suggest some possible future connections between TOC research and important ap-

plication areas. We have selected areas where there is a good possibility of attracting funding from sources

which have not traditionally supported theoretical computer science.

Application: Theory of Software Construction. As each generation of computer technology brings

radical reductions in the cost of hardware, our inability to achieve a signi�cant reduction in the cost of

software development becomes a greater cause for concern. The demand for new software systems far

outstrips our ability to construct them. There is a large gap between theory and practice in the area of

software construction. At the interface between computer science and mathematical logic there have been

impressive advances in our theoretical understanding of programming language semantics, speci�cation

languages and formal theories of program correctness, but these developments have not led to comparable

advances in the pragmatic task of producing reliable software. It is time for this �eld to redirect itself

towards this task. We recommend continuing support of research on the scienti�c foundations of software

engineering and the veri�cation of software systems, but with a strong preference given to investigations

that are directly oriented toward the software development process.

Application: Computational Biology. The �eld of biology has been undergoing a conceptual revolu-

tion, in which cells and organisms are viewed as information processing systems. Biologists have learned

that digital information in the form of DNA governs the chemical processes of the cell and constitutes the

genetic endowment that is passed from parent to child. A vast e�ort is underway to sequence the human

genome, elucidate the information it contains, and identify the abnormalities within it that account for

genetic diseases. This quest has led to the development of bioinformatics as an important new professional

specialty, and has introduced a need for new combinatorial algorithms and database techniques to support

the acquisition and interpretation of genetic information. A growing number of theoretical computer scien-

tists are rising to this challenge. While much of their work to date has been well motivated, certain topics

have become fashionable which sound biologically relevant but omit key aspects, such as the presence of

errors in all biological data. To ensure the relevance of future research in this area, proposals should be

encouraged in which algorithm researchers work with biologists to formulate and solve real problems. We

7

are hopeful that this e�ort will draw support from the biology side as well as from the traditional funding

sources for theoretical computer science.

Future Application Areas. The choice of application areas for future major funding e�orts should

address the roadblocks that limit the e�ectiveness of computing and telecommunications in our society.

Proposals for theoretical work motivated by the ubiquity of computers and communications, parallel and

distributed systems, and large knowledge repositories should be warmly encouraged. Encouragement should

also be given to theoretical research that supports the e�cient construction of portable and reusable software.

In the following two sections we propose two speci�c initiatives intended to focus theoretical research on

these objectives. The �rst of these is entitled \Information Access in a Globally Distributed Environment"

and the second is called \The Algorithmic Tool Kit." We anticipate that some theoreticians, looking at these

two initiatives, will ask \Where's the theory?". Indeed, these initiatives largely represent virgin territory

for theory, in which the necessary abstractions and theoretical models have not yet been formulated. We

are con�dent that these areas can be a rich source of interesting and relevant theoretical ideas.

4 Information Access in a Globally Distributed Environment

From the inception of computer science as a discipline, theoretical work motivated by the random-access

machine model of computation has had signi�cant impact on the practice of computing; and the practice

of computing has helped nourish theoretical development and use of new models of computation. The de-

velopment of the national information infrastructure o�ers abundant opportunities for similar contributions

from theory to practice, as well as strong motivation for the development of new theoretical models and

the identi�cation of new problems. The return on investments in theoretical research in this area should be

substantial because much of the new infrastructure is still undeveloped.

Timely, accurate information is vital for our economy, health, and society. As computers and communi-

cations become ubiquitous, it should become possible for people wherever they are to �nd the information

they need, in the media they desire, and in a form they can understand. However, we are far from achieving

this goal:

� New models and methods are needed for the organization, storage, retrieval, processing, and presen-

tation of multimedia information. Relational database theory had a profound impact on the design of

today's database management systems but at present we do not have a similar foundation for the ef-

fective design of large, distributed, multimedia knowledge repositories. General models and algorithms

for multimedia query languages are at the moment rudimentary and unsatisfactory.

� We need seamless mechanisms for allowing diverse information sources to interoperate with all intended

applications. Our ultimate goal is to develop models around which to e�ectively organize and access

all of human knowledge.

� We need methods for ensuring appropriate levels of security, safety, and privacy among users of highly-

interconnected resources. Theoretical research in cryptography, communication protocols, system

security and network reliability already informs technological developments in this area, but more

work is needed to handle the questions and decisions likely to arise in the future.

� To support the rapid development of the new multimedia applications, we need tools and services for

discovering, locating, and managing information distributed throughout networks of networks. The

structure, form, function, and location of these tools and services pose di�cult algorithmic problems

in a number of areas including network and protocol design, routing,
ow control, scheduling, and

bandwidth optimization.

We therefore propose a research initiative on Information Access in a Globally Distributed Environment.

The intent is to stimulate theoretical research motivated by the ubiquity of computers and communications,

8

parallel and distributed systems, and large knowledge repositories. The goal is to provide the scienti�c foun-

dation upon which we can design an infrastructure that permits universal access to the nation's information

resources in as cohesive and cost-e�ective a manner as possible.

5 The Algorithmic Tool Kit

It is a notorious fact that software designers are continually reinventing the wheel. Software components are

typically designed to meet a highly speci�c set of operating requirements and to run on a speci�c machine

or family of machines. Because the operating conditions under which a program will work are so highly

constrained, large software systems become rigid as they evolve over time, and eventually must be scrapped

when they can no longer adapt to changing environments and functional requirements. Because software is

not su�ciently portable or reusable, it is di�cult for software designers to make use of the work of others,

and a great deal of duplication of e�ort results.

It is also clear that in many cases a considerable time lag exists between the discovery of a better algorithm

for some problem and the implementation of that discovery in application software. Indeed many theoretical

advances in algorithm design are never implemented or tested at all. A long-standing communication gap

between theoreticians and practitioners has led to a situation where software developers are not aware of

leading-edge research in algorithm design, and theoreticians are not informed about the relevance of their

results to real problems.

To counteract these trends we propose a research initiative to create the Algorithmic Tool Kit, an inte-

grated suite of portable and reusable software components which we call algorithmic building blocks. These

building blocks would be speci�ed and implemented in an abstract setting, but would be capable of being

ported to a variety of computing platforms and supporting a wide variety of applications. Typical applica-

tions might include VLSI design systems, database systems, graphics and multimedia applications, digital

libraries, transaction processing systems, spreadsheet applications, and high-speed integrated communica-

tion networks.

The Algorithmic Tool Kit is related to a number of current e�orts in academia and industry to build

software repositories, notably the Leda project at Saarbrucken, Germany. It would exploit the vast body of

knowledge concerning the representation, design, analysis and veri�cation of algorithms and data structures

that has been built up by the computer science research community. The initial set of building blocks

would consist of implementations of fundamental data structures such as heaps, trees, dictionary search

structures and graphs. The next layer of building blocks would be built upon this foundation, and would

include implementations of well-analyzed algorithms for sorting, searching, parsing and string processing,

manipulation of algebraic and geometric objects, discrete and continuous optimization, logical inference, and

so forth. At the next layer would be building blocks to support communication and data access in parallel and

distributed environments. These would include algorithms for routing, scheduling and resource allocation,

protocols for communication, security and cryptographic protection, and implementations of distributed

computation primitives such as mutual exclusion and distributed consensus. The choice of further building

blocks to be included would be developed through consultation between speci�c application communities

and researchers working on the design and analysis of algorithms.

The Tool Kit would be freely accessible over the Internet, and there would be a mechanism for collecting

reports of user experience.

For the sake of reusability and portability, the algorithms would be speci�ed at a level of abstraction

that suppresses many machine-dependent details. The choice of a speci�cation language for the algorithms

would be a major research challenge. The speci�cation language would provide the "glue" connecting the

separate building blocks, ensuring that they used common data formats and had compatible interfaces, so

that blocks could be freely composed together without unexpected side e�ects. This compatibility would

permit the rapid prototyping of complex applications.

Many kinds of research e�orts would be crucial to the success of the Algorithmic Tool Kit. These include:

choosing appropriate speci�cation and implementation languages; developing careful implementations of

9

sophisticated algorithms; developing standards of software quality, including such aspects as functionality,

serviceability, reliability and performance; assessing performance of algorithms and data structures under

various environmental scenarios; developing methodologies for testing and validating interfaces between

building blocks; and building search tools that �nd appropriate building blocks for a particular application.

We believe that this initiative will present exciting and relevant challenges to theoreticians concerned

with the design, analysis and veri�cation of algorithms, build strong bridges between the theory community

and application developers, and lead to the creation of a valuable body of reusable and portable software.

6 Education

A critical problem facing theory students is a lack of job opportunities after graduation. Furthermore, there

is a perception that theory students are less prepared for jobs in industry than are students in other areas

of computer science, in part because mainstream theoretical research has become separated from real issues

of development and application. For members of underrepresented groups who already experience some

isolation within the discipline, this second layer of separation can be especially di�cult to overcome.

To remedy the problem and to change the perception, graduate programs in computer science must be

shaped to meet two broad goals. First, all graduate students, theoreticians and non-theoreticians alike,

should be aware of both the potential and the limitations that both old and new theoretical results have for

helping to solve applied problems. Second, young theoreticians must obtain greater exposure to practical

research problems in computer science and other disciplines.

We recommend that academic computer scientists at institutions throughout the United States under-

take a critical self-assessment of the relationships between theory and other research areas within their own

programs. How much exposure do young theoreticians get to applications? How is theoretical research pre-

sented to graduate students in other areas? How much cross-disciplinary education occurs in the classroom,

and how much occurs in the general research environment? How much isolation is there between di�erent

research groups at the professor level? Each institution has a responsibility to shape its educational progam

to meet the needs of its graduate students; perhaps as never before, those needs include familiarity with a

broad spectrum of computer science rather than narrow specialization.

We also recommend several measures by which funding agencies can support e�orts to broaden the

education of theory students and to strengthen the ties between theoreticians and practitioners. We focus

on graduate and postdoctoral education, since curriculum development and research at the undergraduate

and K-12 levels involve broader constituencies than just the TOC community.

� Develop fellowship programs to support summer or year-long visits by theory graduate students and

postdocs to industrial research sites. These visits would allow students to collaborate on projects

involving application of theoretical results to real problems.

� Develop programs to support summer or year-long visits by theory faculty to industrial research

sites. Educators who are not familiar with applications of their research will not be able to pass this

knowledge on to their students.

� Support multi-disciplinary, multi-institution, project-oriented research e�orts, both large and small.

The Human Genome Project is a good example of a large coordinated e�ort that supports the inte-

gration of theory and practice. It would be desirable to fund a range of smaller projects representing

joint e�orts by researchers with di�erent areas of expertise.

� Support mechanisms by which theoreticians and practitioners (students and faculty) can work together

and exchange problems and solutions. One possible medium for this type of exchange is the World

Wide Web. Another is a series of topic-oriented workshops, perhaps sponsored by DIMACS.

10

7 Summary of Recommendations

The �eld of theoretical computer science has an outstanding record of achievement. It has contributed

a rich set of fundamental concepts as well as many concrete results of value to practitioners. Nonethe-

less, the �eld is going through a critical period, especially in the United States. The U.S. job market for

theoreticians is contracting and research funding is becoming di�cult to obtain. Moreover, as theoretical

computer science matures, there is a natural tendency towards specialization which makes its achievements

less accessible, and therefore less appreciated by applied computer scientists and computer users. To help

the theory of computing community in the U.S. prosper in this di�cult environment, we o�er the following

recommendations.

Recommendation 1. It is essential for the TOC community to strengthen its communication with the

rest of computer science and with other disciplines, and to increase its impact on key application areas.

Recommendation 2. It is also essential to maintain a strong activity in core theory and fundamental

algorithms. Proposals in these areas are best evaluated by peer review.

Recommendation 3. Research which builds bridges between basic theory and applications must be

given much greater priority. Funding for such bridging activity should come not at the expense of core

theory, but rather by attracting funding from sources that have not traditionally supported theoretical

computer science.

Recommendation 4. E�orts must be made to ensure that promising algorithms discovered by the

theory community are implemented, tested and re�ned to the point where they can be usefully applied in

practice.

Recommendation 5. Theoretical computer scientists should provide accessible expositions of their

work, both within their research articles and in expository articles aimed at a broad audience.

Recommendation 6. Theoretical computer scientists should establish close ties with practitioners,

rather than isolating themselves within theory groups.

Recommendation 7. Graduate students in theoretical computer science should be exposed to ap-

plications and experimental research, and graduate students in other areas of computer science should be

exposed to the methods and results of theoretical computer science.

Recommendation 8. We recommend continuing support of research on the scienti�c foundations

of software engineering and the veri�cation of software systems, but with a strong preference given to

investigations that are directly oriented toward the software development process.

Recommendation 9. The ongoing revolution in biology, with its emphasis on information processing

within organisms, o�ers great challenges and opportunities for theoretical computer scientists. We recom-

mend augmented funding for collaborations between theoretical computer scientists and biologists. This

funding should come from the biology side as well as the computer science side.

Recommendation 10. Research in application-speci�c theory should address the roadblocks that

limit the e�ectiveness of computing and telecommunications in our society. Proposals for theoretical work

motivated by the ubiquity of computers and communications, parallel and distributed systems, and large

knowledge repositories should be warmly encouraged.

Recommendation 11. Funding agencies should consider a new initiative concerned with information

access in a globally distributed environment. Theoretical computer scientists can play a signi�cant role in

developing the foundations of this subject.

Recommendation 12. We recommend a new funding initiative, the Algorithmic Tool Kit, as a vehicle

for bringing the knowledge of the TOC community to bear on the problem of producing e�cient, portable

and reusable software.

Recommendation 13. We recommend that academic computer scientists at institutions throughout

the United States undertake a critical self-assessment of the relationships between theory and other research

areas within their own programs.

Recommendation 14. Funding agencies should support mechanisms by which theoreticians and prac-

titioners (students and faculty) can work together and exchange problems and solutions. These include

11

summer or year-long visits by theory graduate students, postdocs and faculty to industrial research sites

and multi-disciplinary, multi-institution, project-oriented research e�orts, both large and small.

Acknowledgements Professors Ajoy Datta and Lawrence Larmore of the University of Nevada at Las

Vegas hosted the NSF-sponsored workshop at which this committee began its work. Brian Bourgon and

Jerry L. Derby of UNLV prepared a transcript of the discussions at the workshop. Andrew Adamatzky,

Eric Allender, Dana Angluin, Ronald V. Book, Anne Condon, Charles Elkan, Lance Fortnow, Peter Gacs,

Susan Landau, Michael Luby, Jack Lutz, Leonard Pitt, Panos Pardalos, Serge Plotkin, David Shmoys, Carl

Smith, D. E. Stevenson, Eva Tardos and Michael S. Waterman contributed to the preparation of white

papers presented at the open meeting that preceded the workshop. David Applegate, Yoav Freund, Mike

Kearns, Maria Klawe, Dana Latch, Nancy Lynch, Nick Pippenger, Leslie Valiant and Mihalis Yannakakis

are among the many who provided advice and assistance to the committee. We thank all these people for

their help.

12

